上海交通大学学报(医学版), 2024, 44(8): 991-998 doi: 10.3969/j.issn.1674-8115.2024.08.008

论著 · 基础研究

番泻苷A对2型糖尿病小鼠动脉粥样硬化斑块形成及5-羟色胺信号分子表达的影响

刘美志,1, 王子杨1, 姜雅宁1, 弥萌2, 孙永宁,1

1.上海中医药大学附属市中医医院心病科,上海 200071

2.陕西中医药大学第一临床医学院,西安 712046

Effects of sennoside A on atherosclerotic plaque formation and expression of 5-hydroxytryptamine signal moleculars in mice with diabetes mellitus type 2

LIU Meizhi,1, WANG Ziyang1, JIANG Yaning1, MI Meng2, SUN Yongning,1

1.Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China

2.The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an 712046, China

通讯作者: 孙永宁,电子信箱:ynsun2002@126.com

编委: 崔黎明

收稿日期: 2024-02-08   接受日期: 2024-04-15  

基金资助: 国家自然科学基金.  8207140172.  8187140041.  8227141287

Corresponding authors: SUN Yongning, E-mail:ynsun2002@126.com.

Received: 2024-02-08   Accepted: 2024-04-15  

作者简介 About authors

刘美志(1994—),女,博士生;电子信箱:Mary53194@126.com。 E-mail:Mary53194@126.com

摘要

目的·研究番泻苷A(sennoside A,SA)对2型糖尿病(diabetes mellitus type 2,T2DM)小鼠动脉粥样硬化斑块形成和5-羟色胺(5-hydroxytryptamine,5-HT)及其受体表达的影响。方法·将载脂蛋白E基因敲除小鼠12只随机分为模型组(model组)和治疗组(model+SA组),每组6只,同遗传背景C57BL/6J小鼠6只作为对照组(control组)。Control组普通饲养,model组和model+SA组在高脂饲养基础上每日给予腹腔注射30 mg/kg链脲佐菌素(streptozotocin,STZ)建立T2DM模型。Model+SA组每日给予SA(45 mg/kg)灌胃干预8周,control组和model组给予等体积双蒸水灌胃。比较造模及治疗前后小鼠体质量、空腹血糖和餐后2 h血糖情况,采用油红O染色和苏木精-伊红染色(hematoxylin-eosin staining,H-E染色)观察小鼠主动脉斑块面积,并用ELISA试剂盒测定小鼠血清和胸主动脉中5-HT水平,采用蛋白质印迹法(Western blotting)检测小鼠胸主动脉中5-羟色胺2B受体(5-hydroxytryptamine receptor 2B,HTR2B)和5-羟色胺转运蛋白(serotonin transporter,SERT)的表达情况。结果·与control组相比,model组小鼠体质量、空腹血糖和餐后2 h血糖均升高,糖代谢紊乱;主动脉斑块形成,胸主动脉中HTR2B、SERT蛋白表达升高;胸主动脉5-HT浓度降低,血清5-HT浓度升高(均P<0.05)。给予SA治疗后,与model组相比,model+SA组小鼠体质量下降,空腹血糖和餐后2 h血糖水平明显改善;主动脉斑块面积减少,胸主动脉HTR2B、SERT蛋白表达显著降低;胸主动脉5-HT浓度升高,血清5-HT浓度降低(均P<0.05)。结论·SA可减少T2DM小鼠动脉粥样硬化斑块面积,其作用可能与降低血糖、抑制5-HT及其受体表达有关。

关键词: 番泻苷A ; 2型糖尿病 ; 动脉粥样硬化 ; 5-羟色胺 ; 5-羟色胺2B受体

Abstract

Objective ·To investigate the effects of sennoside A (SA) on the formation of atherosclerotic plaque and the expression of 5-hydroxytryptamine (5-HT) and its receptor in mice with diabetes mellitus type 2 (T2DM). Methods ·Twelve mice with knocked-out apolipoprotein E gene were randomly divided into two groups, namely the model group and the model+SA group, with six mice in each group. Six C57BL/6J mice with the same genetic background were used as the control group. The control group was fed with normal diet, and the model group and the model+SA group were given intraperitoneal injection of streptozotocin (30 mg/kg) daily on the basis of high-fat diet to establish a model of T2DM. The model+SA group was given SA daily by gavage for 8 weeks, and the control group and the model group were given equal volume of distillation-distillation H2O by gavage. The body weight, fasting blood glucose (FBG) and 2-h postprandial blood glucose of mice were compared before and after modeling and treatment. The area of aortic plaque was observed by oil red O staining and hematoxylin-eosin (H-E) staining, and the level of 5-HT in serum and thoracic aorta was measured by ELISA kit. Western blotting was used to detect the expression of 5-hydroxytryptamine receptor 2B (HTR2B) and serotonin transporter (SERT) in thoracic aorta of mice. Results ·Compared with the control group, the body weight, FBG and 2-h postprandial blood glucose in the model group increased, and glucose metabolism was disordered. The expression of HTR2B and SERT protein in thoracic aorta increased, while the concentration of 5-HT in thoracic aorta decreased. The serum 5-HT concentration increased (all P<0.05). After treatment with SA, compared with the model group, the body weight of the model+SA group decreased, and FBG and 2-h postprandial blood glucose were significantly improved. The area of aortic plaque and the expression of HTR2B and SERT protein in thoracic aorta significantly decreased, while the concentration of 5-HT increased. The serum 5-HT concentration decreased (all P<0.05). Conclusion ·SA can reduce atherosclerotic plaque area in T2DM mice, which may be related to lowering blood glucose and inhibiting the expression of 5-HT and its receptor.

Keywords: sennoside A (SA) ; diabetes mellitus type 2 (T2DM) ; atherosclerosis ; 5-hydroxytryptamine (5-HT) ; 5-hydroxytryptamine receptor 2B (HTR2B)

PDF (3158KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘美志, 王子杨, 姜雅宁, 弥萌, 孙永宁. 番泻苷A对2型糖尿病小鼠动脉粥样硬化斑块形成及5-羟色胺信号分子表达的影响. 上海交通大学学报(医学版)[J], 2024, 44(8): 991-998 doi:10.3969/j.issn.1674-8115.2024.08.008

LIU Meizhi, WANG Ziyang, JIANG Yaning, MI Meng, SUN Yongning. Effects of sennoside A on atherosclerotic plaque formation and expression of 5-hydroxytryptamine signal moleculars in mice with diabetes mellitus type 2. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2024, 44(8): 991-998 doi:10.3969/j.issn.1674-8115.2024.08.008

我国糖尿病患者约有1.25亿,其中2型糖尿病(diabetes mellitus type 2,T2DM)患者占90%以上1。动脉粥样硬化性心血管疾病是T2DM的主要致死原因2。T2DM患者冠状动脉粥样硬化性心脏病呈现发病早、进展快的特点3。目前针对糖尿病动脉粥样硬化的治疗方法主要是服用降血糖、降血脂和抗血小板药物等,但多具有患者依从性差、药物不良反应大等局限性。近年来,5-羟色胺(5-hydroxytryptamine,5-HT)在糖尿病大血管病变中的作用受到广泛关注。5-HT是一种单胺类神经递质,主要由肠道嗜铬细胞和神经中枢产生。其无法通过血脑屏障,在外周神经系统与中枢神经系统相对独立。5-HT在中枢神经系统与失眠、抑郁症等疾病密切相关4,但在外周神经系统中5-HT产生后大部分存储于血小板中,主要发挥调控血压、心率等作用。研究5发现,糖尿病患者循环系统5-HT水平升高与血管并发症的出现呈正相关。5-HT可能通过促进血小板聚集、刺激血管收缩、诱导炎症和巨噬细胞泡沫细胞的形成等方式参与动脉粥样硬化形成6。因此,抑制5-HT信号表达水平可能有助于缓解糖尿病动脉粥样硬化进展。

在中医领域,动脉粥样硬化被认为是在浊、痰、瘀、毒等病理因素作用下导致的血液、动脉及相互之间关系失调而发生诸如斑块、血栓等的一种病理变化7。活血化瘀、清热解毒是其基本治疗原则。区别于单纯的动脉粥样硬化,糖尿病合并动脉粥样硬化是高血糖、高血脂和胰岛素抵抗等多种因素相互作用导致的一种弥漫性心血管事件,其发病机制为阴虚燥热、津亏液少、血行艰涩、络热血瘀。

中药大黄味苦性寒,具有清热泻火、凉血解毒、逐瘀通经、利湿退黄等功效。既往研究8表明,大黄能够降低血浆5-HT含量。临床采用含大黄的方剂能够抗血管平滑肌细胞增殖,有效防治动脉粥样硬化9。番泻苷A(sennoside A,SA)是一种生物活性丰富的天然产物,主要存在于大黄等中药材中。课题组前期研究10-12发现,SA具有调节糖脂代谢紊乱、改善肝纤维化、抑制肝癌细胞增殖等作用,在45 mg/(kg·d)的剂量下,SA显著升高糖尿病小鼠血浆中胰高血糖素样肽-1(glucagon-like peptide-1,GLP-1)和胰岛素水平,改善小鼠口服葡萄糖耐量。但目前关于其对糖尿病合并动脉粥样硬化的作用尚不明确。本研究拟探究SA对T2DM小鼠动脉粥样硬化斑块形成和血管5-HT信号分子表达的影响,以期为临床开发防治糖尿病心血管疾病的新药物提供思路。

1 材料与方法

1.1 材料

1.1.1 实验动物

雄性载脂蛋白E(apolipoprotein E,ApoE)基因敲除(ApoE-/-)小鼠12只,同遗传背景SPF级雄性近交系C57BL/6J小鼠6只,9周龄,体质量22~24 g,由江苏集萃药康生物科技股份有限公司提供,生产许可证号为SCXK(苏)2023-0009。小鼠饲养于上海中医药大学附属市中医医院实验动物中心,使用许可证号为SYXK(沪)2020-0014,室温20~24 ℃、湿度55%~65%,照明采用每12 h明暗交替循环。

1.1.2 试剂与仪器

SA(B20380,上海源叶生物科技有限公司),链脲佐菌素(HY-13753,美国MedChemexpress),葡萄糖(ST1228,上海碧云天生物技术有限公司),小鼠5-HT ELISA试剂盒(MU30036,武汉贝茵莱生物科技有限公司)。SERT兔多克隆抗体(19559-1-AP,美国Proteintech),HTR2B兔多克隆抗体(A5670,武汉爱博泰克生物科技有限公司),GAPDH兔多克隆抗体(AC001,武汉爱博泰克生物科技有限公司),HRP标记羊抗兔IgG(ab6721,美国Abcam)。血糖仪[罗氏诊断产品(上海)有限公司],天平(BS124S,德国Startorius),快速研磨仪(JXFSTPRP-48,上海净信实业发展有限公司),低温高速离心机(德国Eppendorf),正置光学显微镜(DM 2500M,德国Leica),成像系统(Nikon DS-U3,日本Nikon)。

1.2 实验方法

1.2.1 动物分组与处理

所有小鼠适应性饲养1周后,以6只C57BL/6J小鼠为control组;ApoE-/-小鼠造模成功后[空腹血糖(fasting blood glucose,FBG)≥11.1 mmol/L]采用随机数字表分为模型组(model组)和治疗组(model+SA组),每组6只。control组继续接受普通饮食,model组和model+SA组接受高脂饮食4周诱导胰岛素抵抗。然后model组和model+SA组腹腔注射溶于柠檬酸钠-柠檬酸缓冲液(0.1 mmol/L,pH 4.4)的STZ(30 mg/kg)2~4次以诱导糖尿病,其间control组小鼠接受相同体积的柠檬酸钠-柠檬酸缓冲液。注射STZ结束后,通过血糖仪测量小鼠的FBG。用双蒸水配制SA,并加热助溶。model+SA组以45 mg/kg的剂量每日灌胃给药,连续治疗8周。其间control组和model组给予相同体积双蒸水灌胃。所有小鼠自由采食、饮水。

1.2.2 小鼠体质量、血糖检测

观察各组小鼠的一般情况。每2周记录1次体质量。小鼠禁食不禁水过夜,剪尾取血,检测治疗前后小鼠的FBG水平。分别于给药干预前后,用50%葡萄糖空腹灌胃(2 g/kg),并于2 h后检测小鼠血糖水平。

1.2.3 油红O染色

小鼠禁食12 h,腹腔注射舒泰-50(50 mg/kg)麻醉,处死小鼠。仰卧位固定后,打开胸腔,灌注4%多聚甲醛,剪下主动脉全长,于4%多聚甲醛固定48 h,PBS洗2遍,剥离剔除血管周围脂肪组织。将主动脉血管置于油红O染液中1 h。取出后于乙醇中漂洗3次。浸泡于PBS中,随后取出,以不锈钢针固定,于体视显微镜下拍照,使用Image J软件计算斑块面积占全主动脉总面积百分比。

1.2.4 苏木精-伊红染色

小鼠胸主动脉梯度脱水后包埋,将蜡块切成4~6 μm厚度的薄片,依次将切片放入二甲苯和不同梯度乙醇中各浸泡5~10 min,蒸馏水冲洗。将切片浸入苏木精染液中3~8 min,蒸馏水冲洗;后浸入盐酸乙醇快速分化1 s,蒸馏水冲洗;置于0.6%氨水中使其返蓝,蒸馏水冲洗。将切片浸入伊红染液中1~3 min。之后依次放入不同浓度乙醇中各浸泡5 min梯度脱水透明,晾干后用中性树胶封片。光学显微镜下分别用40×镜和200×镜采集图像,观察胸主动脉病理性斑块情况。

1.2.5 ELISA试剂盒测定

小鼠内眦取血,室温静置30 min,2 000×g离心10 min,取上清液按照试剂盒说明书,测定小鼠血清中5-HT水平。用预冷的PBS冲洗小鼠胸主动脉,去除残留血液,称重后将组织剪碎。将剪碎的组织与对应体积的PBS加入玻璃匀浆器中,在冰上充分研磨,对匀浆液进行超声破碎。将匀浆液5 000×g离心5~10 min,取上清液根据说明书提示检测小鼠胸主动脉中5-HT含量。

1.2.6 蛋白质印迹法(Western blotting)

去除小鼠胸主动脉周围脂肪,用预冷1×PBS清洗3次,去除残余血液,用剪刀将组织剪碎,放入2粒钢珠,加入200 μL组织裂解液(RIPA、蛋白酶抑制剂、磷酸酶抑制剂的体积比为48∶1∶1),用组织匀浆仪在60 Hz条件下处理60 s。置于4 ℃预冷的离心机内,14 000×g离心15 min,取上清液至新的EP管中。根据说明书对总蛋白进行定量并配置上样体系,使电泳样品蛋白质量达到20~30 μg。120 V电压电泳1 h,400 mA恒流转膜80 min。封闭15 min。于4 ℃摇床孵育一抗过夜。次日洗膜后室温孵育二抗1 h,再次洗膜后滴加ECL发光液,置于成像系统获取图片,使用Image J软件计算条带灰度值,并以内参蛋白GAPDH进行标准化处理。

1.3 统计学方法

采用SPSS 26.0软件对数据进行处理。定量资料以x±s表示,服从正态分布及方差齐性时采用单因素方差分析,不服从正态分布或方差不齐时采用Kruskal-Wallis H检验。多个时间点均值比较采用重复测量方差分析。P<0.05表示差异有统计学意义。

2 结果

2.1 SA对小鼠基本体征变化的影响

各组小鼠灌胃给药前后状态和体质量比较结果分别见图1表1。小鼠共饲养16周,其中给药干预8周。随着鼠龄增加,各组小鼠体质量均有不同程度升高。给药干预前,control组小鼠体质量较model组轻(P<0.05);Model+SA组与model组小鼠相比,体质量差异无统计学意义;各组小鼠状态活跃,基本体征均可。干预8周后,control组小鼠毛发顺滑,反应敏捷;与control组相比,model组小鼠毛发干燥,体型肥胖,反应迟钝,体质量明显增加(P<0.05);与model组相比,model+SA组小鼠毛发较顺滑,体型较小,反应力尚可,体质量较轻(P<0.05)。

图1

图1   治疗后各组小鼠一般状态

Fig 1   General state of mice in each group after treatment


表1   治疗前后小鼠体质量比较

Tab 1  Comparison of body weight of mice before and after treatment

ItemBody weight/g
Control group (n=6)

Model group

(n=6)

Model+SA group (n=6)
Before treatment27.68±1.0129.45±0.5429.53±0.45
After treatment30.75±1.0533.28±1.0429.92±1.36

Note:P=0.006, P=0.003, compared with the control group; P=0.001, compared with the model group.

新窗口打开| 下载CSV


2.2 SA对小鼠FBG、餐后2 h血糖的影响

灌胃给药前后各组小鼠FBG、餐后2 h血糖值结果见表2。随着治疗的进行,control组小鼠血糖变化幅度较小,model组血糖逐渐升高,model+SA组血糖略有降低。治疗前和治疗后,与control组相比,model组FBG、餐后2 h血糖升高(均P<0.05)。治疗前,model组与model+SA组FBG、餐后2 h血糖差异无统计学意义;治疗后,与model组相比,model+SA组FBG、餐后2 h血糖有所降低(均P<0.05)。

表2   治疗前后小鼠血糖比较

Tab 2  Comparison of blood glucose in mice before and after treatment

Item

Control group

(n=6)

Model group

(n=6)

Model+SA group (n=6)
Before treatment
FBG/(mmol·L-1)4.85±0.5516.87±3.8918.95±4.59
PBG/(mmol·L-1)6.67±0.7721.53±2.9621.07±2.67
After treatment
FBG/(mmol·L-1)4.88±1.1121.97±5.3316.12±2.05
PBG/(mmol·L-1)7.07±0.6425.03±4.2919.60±2.70

Note: PBG—postprandial blood glucose. P=0.000, compared with the control group; P=0.045, P=0.037, compared with the model group.

新窗口打开| 下载CSV


2.3 SA对小鼠血清、血管5-HT浓度的影响

通过ELISA检测小鼠血清及血管5-HT浓度,结果见表3。与control组相比,model组小鼠血清5-HT浓度升高,胸主动脉中5-HT浓度降低(均P<0.05);与model组相比,model+SA组小鼠血清5-HT浓度降低,胸主动脉5-HT浓度升高(均P<0.05)。

表3   治疗前后小鼠5-HT浓度比较

Tab 3  Comparison of 5-HT concentration in mice before and after treatment

Item5-HT concentration/(ng·mL-1)

Control group

(n=6)

Model group

(n=6)

Model+SA group (n=6)
Serum234.02±37.52375.38±79.46276.78±45.74
Thoracic aorta41.88±3.8619.22±1.5625.31±1.84

Note:P=0.005, P=0.000, compared with the control group; P=0.037, P=0.000, compared with the model group.

新窗口打开| 下载CSV


2.4 SA对小鼠全主动脉斑块形成的影响

小鼠灌胃给药8周后麻醉处死,取全主动脉剥离染色后观察其动脉粥样硬化斑块形成的情况(图2)。结果显示:与control组相比,model组小鼠主动脉斑块面积显著增加(P<0.05);而给予SA治疗后,与model组相比,model+SA组小鼠主动脉斑块面积明显减小(P<0.05)。

图2

图2   各组小鼠主动脉斑块面积比较

Note: A. Representative images of aortic plaque. B. Portion of aortic plaque area. P=0.000, compared with the control group; P=0.013, compared with the model group.

Fig 2   Comparison of aortic plaque area in mice in each group


2.5 SA对小鼠胸主动脉病理斑块的影响

苏木精-伊红染色(hematoxylin-eosin staining,H-E染色)结果显示(图3):control组小鼠胸主动脉中膜层厚度均匀连续,外膜无增生结缔组织,内膜光滑,细胞核分布居中清晰,未见到突起斑块形成;model组胸主动脉中膜层厚度不均且排列紊乱,内膜明显增厚且粗糙不连续,部分内皮细胞脱落,可见多个巨大斑块向血管腔内突出,斑块内有大量泡沫细胞形成,空泡外层有薄纤维覆盖;model+SA组小鼠胸主动脉中膜层细胞排列较model组整齐,未见连续性中断,内膜有中等大小斑块向管腔内突出,斑块内有少量泡沫细胞形成。

图3

图3   各组小鼠胸主动脉病理形态

Fig 3   Pathological morphology of thoracic aorta of mice in each group


2.6 SA对小鼠胸主动脉SERTHTR2B蛋白表达的影响

采用蛋白质印迹法检测各组小鼠胸主动脉中SERT、HTR2B蛋白浓度(图4)。与control组相比,model组SERT、HTR2B蛋白表达水平升高(均P<0.05);与model组相比,model+SA组SERT、HTR2B蛋白表达水平均有不同程度下降(均P< 0.05)。

图4

图4   各组小鼠SERTHTR2B蛋白表达量比较

Note: A. Representative Western blotting bands. B. Quantification of Western blotting bands. P=0.007, P=0.005, compared with the control group; P=0.009, P=0.027, compared with the model group.

Fig 4   Comparison of SERT and HTR2B protein expression levels in mice in each group


3 讨论

T2DM归属于中医学“消渴病”范畴,阴虚燥热内炽,炼液为痰,痰阻脉络,易致血行不畅,瘀毒内生,日久化热入络13,发为“消渴变证”,即糖尿病大血管病变。中药大黄具有清热解毒、逐瘀通经等功效,因其多途径、多靶点的优势,在降血糖、降血脂、抗炎、抗纤维化等方面发挥越来越重要的作用14-17。SA为蒽酮类衍生物,是大黄的作用成分之一。药理学研究18-19证实其能够通过调节肠道菌群、激动GLP-1等方式改善糖尿病。本研究结果再次表明SA能减轻小鼠体质量并降低血糖,还能够减少糖尿病ApoE-/-小鼠胸主动脉斑块形成,为糖尿病合并动脉粥样硬化的防治提供了新思路。

糖尿病患者外周循环5-HT表达水平显著升高5,但不同研究对5-HT在血糖调控中的作用存在矛盾。一些研究20-21认为5-HT促进胰岛β细胞增殖并释放更多的胰岛素,发挥降低血糖的作用;有研究522则倾向于减少循环中5-HT水平有助于降低血糖。这些矛盾的结果可能是由于外源性和内源性5-HT的作用不同、研究的受体不同、暴露和持续时间不同以及胺的浓度不同等因素导致。但可以肯定的是,糖尿病患者中循环5-HT及其代谢产物5-羟基吲哚乙酸(5-hydroxyindole acetic acid,5-HIAA)水平较非糖尿病患者高,且与糖尿病并发症呈正相关5。肥胖患者往往呈现出血液中5-HT高浓度的特点23。有研究24表明,通过抑制小鼠脂肪组织中的5-HT和HTR2B水平,可减少内脏脂肪细胞的脂解进而改善胰岛素抵抗,降低血糖。在本研究中,SA干预后小鼠血糖下降,这与上述研究结果相似。但5-HT及其受体的表达降低是否也在其中发挥作用,值得进一步深入探究。

在T2DM持续的糖脂代谢紊乱状态下,血管内皮破损处的胶原蛋白会与血小板上的整合素αⅡbβ3受体相互作用,激活细胞内HTR2B等G蛋白依赖性信号,致使血小板内致密颗粒产生胞吐作用释放5-HT25-27。因为血小板本身表达一定水平的5-HT受体,致密颗粒的分泌会导致反馈回路出现,从而增强血管损伤部位的血小板活化和聚集28。当受损内皮细胞无法合成或释放足够的内皮源性舒张因子(endothelium-derived relaxing factor,EDRF),进入血液的5-HT会促使受损冠状动脉强力收缩,加剧动脉粥样硬化形成29。本研究中,小鼠胸主动脉5-HT浓度呈现与血清中相反的结果,具体原因尚不明确,仍需要进一步探索。

5-HT作为一种抑制性神经递质,通过与不同受体结合发挥生物学作用。HTR2B属于G蛋白偶联受体之一,能够在血管平滑肌细胞和内皮细胞中表达,介导作为内源性配体的5-HT,参与神经传导物质的传递,调控血管壁弹性和收缩力28。BUGA等30发现HTR2B能在人动脉粥样硬化斑块中表达。平滑肌细胞表型改变是血管内膜增厚的关键因素之一,在动脉粥样硬化早期扮演重要角色。有研究31发现,HTR2B可通过激活转化生长因子-β1/磷酸化Smad2蛋白信号诱导平滑肌细胞分化从而导致血管内膜增厚。此外,有研究32证实:高脂血症ApoE-/-小鼠主动脉根部的HTR2B表达和外周5-HT的血清水平明显高于对照组;5-HT处理后增强了肿瘤坏死因子-α诱导的基质金属蛋白酶-3表达,而敲低Htr2b后基质金属蛋白酶-3表达则会降低,说明5-HT信号转导能够通过调控炎症信号导致组织损伤,促进动脉粥样硬化发展。本研究中,model组小鼠HTR2B蛋白表达升高,与以上研究结果类似;而经过SA干预,HTR2B蛋白表达下调。由此推测,SA改善动脉粥样硬化斑块形成可能与下调HTR2B表达相关,但仍需进一步深入研究。

血管对5-HT的反应因血管大小、动脉组织来源和受体亚型不同而有所差异33。研究6发现,胸主动脉5-HT浓度升高会导致动脉粥样硬化,但依赖于SERT的转运作用。5-HT通过SERT转运至平滑肌细胞内会导致平滑肌细胞增殖,促使血管内膜增厚34。在动脉粥样硬化进展中,被SERT转运至血小板的5-HT能够诱导中性粒细胞产生脱颗粒作用,释放过氧化物酶和过氧化氢,使得CD11抗原样家族成员B表达增加,促进局部炎症反应35,损伤血管。我们的结果显示,动脉粥样硬化模型小鼠胸主动脉中SERT表达也有明显升高,与上述结果相似。

综上所述,本研究发现SA能够改善T2DM小鼠动脉粥样硬化斑块形成,并抑制5-HT相关信号分子HTR2B、SERT表达。鉴于中药有效成分作用靶点广泛,关于SA通过何种途径影响5-HT信号调控,以及SA对糖尿病小鼠5-HT相关信号分子表达的影响和对血糖调控之间的因果关系,仍有待于进一步探索。

作者贡献声明

刘美志参与了数据采集、数据处理分析、文章撰写,王子杨参与了数据采集,姜雅宁、弥萌参与了文章修改,孙永宁参与了实验设计并指导文章撰写。所有作者均阅读并同意了最终稿件的提交。

AUTHOR's CONTRIBUTIONS

LIU Meizhi collected, processed and analyzed the data, and drafted the manuscript. WANG Ziyang collected data. JIANG Yaning and MI Meng revised the manuscript. SUN Yongning participated in experimental design and directed the writing of the manuscript. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

The authors disclose no relevant conflict of interests.

参考文献

Chinese Diabetes Society. 中国2型糖尿病防治指南 (2020年版) (上)[J]. 中国实用内科杂志, 2021, 41(8): 668-695.

[本文引用: 1]

Chinese Diabetes Society. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition) (Part 1)[J]. Chinese Journal of Practical Internal Medicine, 2021, 41(8): 668-695.

[本文引用: 1]

MOSENZON O, ALGUWAIHES A, LEON J L A, et al. CAPTURE: a multinational, cross-sectional study of cardiovascular disease prevalence in adults with type 2 diabetes across 13 countries[J]. Cardiovasc Diabetol, 2021, 20(1): 154.

[本文引用: 1]

WONG N D, SATTAR N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention[J]. Nat Rev Cardiol, 2023, 20(10): 685-695.

[本文引用: 1]

YAO C Y, WANG Z Y, JIANG H Y, et al. Ganoderma lucidum promotes sleep through a gut microbiota-dependent and serotonin-involved pathway in mice[J]. Sci Rep, 2021, 11(1): 13660.

[本文引用: 1]

YOUNG R L, LUMSDEN A L, MARTIN A M, et al. Augmented capacity for peripheral serotonin release in human obesity[J]. Int J Obes, 2018, 42(11): 1880-1889.

[本文引用: 4]

IMAMDIN A, VAN DER VORST E P C. Exploring the role of serotonin as an immune modulatory component in cardiovascular diseases[J]. Int J Mol Sci, 2023, 24(2): 1549.

[本文引用: 2]

金霄, 吴敏. 动脉粥样硬化从“伏毒”论治[J]. 辽宁中医杂志, 2024, 51(6): 39-42.

[本文引用: 1]

JIN X, WU M. Treatment of atherosclerosis from "Fudu"[J]. Liaoning Journal of Traditional Chinese Medicine, 2024, 51(6): 39-42.

[本文引用: 1]

谭明义, 陈根成, 唐纯志. 大黄胶囊预防脑梗塞并发应激性胃溃疡的实验研究[J]. 广州中医药大学学报, 2001, 18(2): 149-151.

[本文引用: 1]

TAN M Y, CHEN G C, TANG C Z. Preventive effects of Radix et Rhizoma Rhei Granule on the occurrence of complicated stress ulcer of stomach in rats after cerebral infarction[J]. Journal of Guangzhou University of Traditional Chinese Medicine, 2001, 18(2): 149-151.

[本文引用: 1]

宋少伟, 路瑷雯, 董燕平, 等. 大黄䗪虫丸防治动脉粥样硬化的作用机制及临床研究进展[J]. 现代中西医结合杂志, 2022, 31(24): 3495-3499.

[本文引用: 1]

SONG S W, LU A W, DONG Y P, et al. The mechanism and clinical research progress of Dahuang Zhechong pills in the prevention and treatment of atherosclerosis[J]. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2022, 31(24): 3495-3499.

[本文引用: 1]

MA L, CAO X Y, YE X T, et al. Sennoside A induces GLP-1 secretion through activation of the ERK1/2 pathway in L-cells[J]. Diabetes Metab Syndr Obes, 2020, 13: 1407-1415.

[本文引用: 1]

朱红. 番泻苷A通过抑制DNMT1介导的PTEN高甲基化改善四氯化碳诱导的小鼠肝纤维化[D]. 合肥: 安徽医科大学, 2021.

ZHU H. Protective effects and mechanisms of sennoside A on CCl4-induced hepatic fibrosis in mice[D]. Hefei: Anhui Medical University, 2021.

LE J M, FU Y, HAN Q Q, et al. Transcriptome analysis of the inhibitory effect of sennoside A on the metastasis of hepatocellular carcinoma cells[J]. Front Pharmacol, 2020, 11: 566099.

[本文引用: 1]

周吉, 王海燕, 王子晨, 等. 基于“脉络学说”和“瘀血理论”探讨糖尿病大血管病变氧化应激机制[J]. 河北中医, 2024, 46(3): 485-488, 492.

[本文引用: 1]

ZHOU J, WANG H Y, WANG Z C, et al. To explore the mechanism of oxidative stress in diabetic macroangiopathy based on "vein theory" and "blood stasis theory"[J]. Hebei Journal of Traditional Chinese Medicine, 2024, 46(3): 485-488, 492.

[本文引用: 1]

姚建莉, 梁永林, 任梦函, 等. 大黄糖络丸通过调控PI3K-Akt/NF-κB信号通路减轻糖尿病大鼠大血管炎症反应[J]. 中国病理生理杂志, 2024, 40(4): 646-652.

[本文引用: 1]

YAO J L, LIANG Y L, REN M H, et al. Rhubarb sugar pills attenuate inflammatory response in large blood vessels of diabetic rats by regulating PI3K-Akt/NF-κB signaling pathway[J]. Chinese Journal of Pathophysiology, 2024, 40(4): 646-652.

[本文引用: 1]

HUANG H H, LIAO D, DONG Y, et al. Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: a systematic review and meta-analysis[J]. Nutr Rev, 2020, 78(8): 615-626.

刘亚洲, 姜静雨, 拉毛才旦, 等. 大黄的降血脂生物活性成分及作用机制研究进展[J]. 食品安全质量检测学报, 2023, 14(11): 272-282.

LIU Y Z, JIANG J Y, LAMAO C D, et al. Research progress on the hypolipidemic bioactive components andmechanism of action of Rheum[J]. Journal of Food Safety & Quality, 2023, 14(11): 272-282.

王静, 李玉婷, 刘大伟, 等. 大黄蒽醌类主要有效成分抗肾纤维化作用机制的研究进展[J]. 中医研究, 2023, 36(10): 92-96.

[本文引用: 1]

WANG J, LI Y T, LIU D W, et al. Research progress on the anti-renal fibrosis mechanism of the main active components of anthraquinones in Radix et Rhizoma Rhei[J]. Traditional Chinese Medicinal Research, 2023, 36(10): 92-96.

[本文引用: 1]

WEI Z H, SHEN P L, CHENG P, et al. Gut bacteria selectively altered by sennoside A alleviate type 2 diabetes and obesity traits[J]. Oxid Med Cell Longev, 2020, 2020: 2375676.

[本文引用: 1]

LE J M, ZHANG X Y, JIA W P, et al. Regulation of microbiota-GLP1 axis by sennoside A in diet-induced obese mice[J]. Acta Pharm Sin B, 2019, 9(4): 758-768.

[本文引用: 1]

GOJANI E G, WANG B, LI D P, et al. The impact of psilocybin on high glucose/lipid-induced changes in INS-1 cell viability and dedifferentiation[J]. Genes, 2024, 15(2): 183.

[本文引用: 1]

ASUAJE PFEIFER M, LIEBMANN M, BEUERLE T, et al. Role of serotonin (5-HT) in GDM prediction considering islet and liver interplay in prediabetic mice during gestation[J]. Int J Mol Sci, 2022, 23(12): 6434.

[本文引用: 1]

GEORGESCU T, LYONS D, HEISLER L K. Role of serotonin in body weight, insulin secretion and glycaemic control[J]. J Neuroendocrinol, 2021, 33(4): e12960.

[本文引用: 1]

SANTOS A P, COUTO C F, PEREIRA S S, et al. Is serotonin the missing link between COVID-19 course of severity in patients with diabetes and obesity?[J]. Neuroendocrinology, 2022, 112(11): 1039-1045.

[本文引用: 1]

CHOI W G, CHOI W, OH T J, et al. Inhibiting serotonin signaling through HTR2B in visceral adipose tissue improves obesity-related insulin resistance[J]. J Clin Invest, 2021, 131(23): e145331.

[本文引用: 1]

WU B Y, YE Y, XIE S S, et al. Megakaryocytes mediate hyperglycemia-induced tumor metastasis[J]. Cancer Res, 2021, 81(21): 5506-5522.

[本文引用: 1]

LI L, ZHOU J W, WANG S, et al. Critical role of peroxisome proliferator-activated receptor α in promoting platelet hyperreactivity and thrombosis under hyperlipidemia[J]. Haematologica, 2022, 107(6): 1358-1373.

朱奕霖, 彭婕, 施小凤. 整合素αⅡbβ3在血小板中作用的研究现状[J]. 国际输血及血液学杂志, 2023, 46(1): 26-33.

[本文引用: 1]

ZHU Y L, PENG J, SHI X F. Research status on role of integrinαⅡbβ3 in platelets[J]. International Journal of Blood Transfusion and Hematology, 2023, 46(1): 26-33.

[本文引用: 1]

RIEDER M, GAUCHEL N, BODE C, et al. Serotonin: a platelet hormone modulating cardiovascular disease[J]. J Thromb Thrombolysis, 2021, 52(1): 42-47.

[本文引用: 2]

ZHU J S, YANG L, JIA Y F, et al. Pathogenic mechanisms of pulmonary arterial hypertension: homeostasis imbalance of endothelium-derived relaxing and contracting factors[J]. JACC Asia, 2022, 2(7): 787-802.

[本文引用: 1]

BUGA A M, CIOBANU O, BĂDESCU G M, et al. Up-regulation of serotonin receptor 2B mRNA and protein in the peri-infarcted area of aged rats and stroke patients[J]. Oncotarget, 2016, 7(14): 17415-17430.

[本文引用: 1]

WENGLÉN C, DEMIREL I, EREMO A G, et al. Targeting serotonin receptor 2B inhibits TGFβ induced differentiation of human vascular smooth muscle cells[J]. Eur J Pharmacol, 2023, 944: 175570.

[本文引用: 1]

FONG F, XIAN J, DEMER L L, et al. Serotonin receptor type 2B activation augments TNF-α-induced matrix mineralization in murine valvular interstitial cells[J]. J Cell Biochem, 2021, 122(2): 249-258.

[本文引用: 1]

闻松, 杨长坤, 江平. 5-羟色胺及其受体拮抗剂在心血管疾病中的研究现状[J]. 河北医科大学学报, 2021, 42(12): 1475-1481.

[本文引用: 1]

WEN S, YANG C K, JIANG P. Research status of serotonin and its receptor antagonists in cardiovascular diseases[J]. Journal of Hebei Medical University, 2021, 42(12): 1475-1481.

[本文引用: 1]

ZHANG Y, CHEN Y B, CHEN G, et al. Upregulation of miR-361-3p suppresses serotonin-induced proliferation in human pulmonary artery smooth muscle cells by targeting SERT[J]. Cell Mol Biol Lett, 2020, 25: 45.

[本文引用: 1]

MAULER M, HERR N, SCHOENICHEN C, et al. Platelet serotonin aggravates myocardial ischemia/reperfusion injury via neutrophil degranulation[J]. Circulation, 2019, 139(7): 918-931.

[本文引用: 1]

/