Bipolar disorder (BD) is a chronic, recurrent mental illness characterized by extreme fluctuations in mood and state, clinically manifested as recurrent or alternating manic, depressive, and mixed episodes. The pathogenesis is complex and remains unknown, with neuroinflammation considered as a key factor in its development. In-depth research not only helps to understand the etiology, but also provides direction for the development of new therapeutic targets. This paper reviews recent studies on neuroinflammation in BD, discusses changes in peripheral and central inflammation and associated biomarkers, explores the underlying mechanisms of pathogenesis, and briefly describes the mechanisms and potential of mood stabilizers and new therapeutic drugs in anti-inflammatory effect, aiming to suggest possible future research directions.
WANG Xiaohong, FANG Yiru. Research progress on the neuroinflammation mechanisms in bipolar disorder. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2025, 45(1): 107-112 doi:10.3969/j.issn.1674-8115.2025.01.013
脑脊液(cerebrospinal fluid,CSF)在大脑的免疫反应中发挥着重要作用,其中含有的免疫细胞及产生的细胞因子可以反映出大脑的免疫状态。先前的一项研究对比了BD患者和健康对照者CSF中细胞因子浓度,发现BD患者CSF中IL-1β水平升高,IL-6水平降低[17]。另一项研究表明与对照组相比,BD患者CSF中炎症相关细胞因子,如IL-8、单核细胞趋化蛋白1(monocyte chemoattractant protein1,MCP-1)、几丁质酶样蛋白(chitinase-3 like protein 1,CHI3L1)浓度更高[18];对这些患者进行6~7年的前瞻性随访,发现基线MCP-1浓度与躁狂/轻躁狂发作和随访期间的住院治疗呈正相关,CHI3L1浓度与躁狂/轻躁狂发作和精神病性症状的发生呈负相关[19]。这些结果说明了CSF中炎症相关细胞因子可能与临床症状具有相关性,体现了CNS中复杂的免疫炎症机制。然而,目前尚不清楚BD受试者脑脊液中较高水平的细胞因子是外周免疫细胞浸润的结果,还是神经细胞激活的产物。
1.3 外周炎症和中枢炎症的联系
有研究提出血脑屏障(blood-brain barrier,BBB)受损模型将BD中的外周炎症和中枢炎症联系起来。在BD的病理情况下,外周的免疫系统被激活,产生了促炎因子,BBB完整性和选择通透性可能遭到破坏,从而允许炎症介质穿过屏障,进入CNS,激活大脑中的免疫细胞,引发一系列神经炎症反应;这些反应可能导致神经细胞和髓鞘的损伤,影响神经回路的功能,这在BD的发病机制中可能起着重要作用[20]。关于这方面,KAMINTSKY等[21]招募36名BD患者和14名对照者,通过动态对比增强磁共振成像(dynamic contrast-enhanced magnetic resonance imaging,DCE-MRI)扫描定量评估BBB通透功能,并进行了临床和精神病学评估;研究发现,约28%的BD患者存在明显的BBB渗漏,且表现出更严重的抑郁和焦虑症状,而对照组中未出现此类情况,表明BBB功能障碍在BD发病及症状之间存在关联。
WANG Xiaohong was involved in the conceptualization of the review and responsible for writing and revising the article. FANG Yiru was involved in the outline guidance and proofreading of the review. Both authors have read the final version of paper and consented to submission.
利益冲突声明
所有作者声明不存在利益冲突。
COMPETING INTERESTS
All authors declare no relevant conflict of interests.
GIRIDHARAN V V, SAYANA P, PINJARI O F, et al. Postmortem evidence of brain inflammatory markers in bipolar disorder: a systematic review[J]. Mol Psychiatry, 2020, 25(1): 94-113.
SAYANA P, COLPO G D, SIMÕES L R, et al. A systematic review of evidence for the role of inflammatory biomarkers in bipolar patients[J]. J Psychiatr Res, 2017, 92: 160-182.
SOLMI M, SURESH SHARMA M, OSIMO E F, et al. Peripheral levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, and interleukin-1β across the mood spectrum in bipolar disorder: a meta-analysis of mean differences and variability[J]. Brain Behav Immun, 2021, 97: 193-203.
DADOULI K, JANHO M B, HATZIEFTHIMIOU A, et al. Neutrophil-to-lymphocyte, monocyte-to-lymphocyte, platelet-to-lymphocyte ratio and systemic immune-inflammatory index in different states of bipolar disorder[J]. Brain Sci, 2022, 12(8): 1034.
FIEDOROWICZ J G, PROSSIN A R, JOHNSON C P, et al. Peripheral inflammation during abnormal mood states in bipolar I disorder[J]. J Affect Disord, 2015, 187: 172-178.
VEGA-NÚÑEZ A, GÓMEZ-SÁNCHEZ-LAFUENTE C, MAYORAL-CLERIES F, et al. Clinical value of inflammatory and neurotrophic biomarkers in bipolar disorder: a systematic review and meta-analysis[J]. Biomedicines, 2022, 10(6): 1368.
TONIN P T, VALVASSORI S S, LOPES-BORGES J, et al. Effects of ouabain on cytokine/chemokine levels in an animal model of mania[J]. J Neuroimmunol, 2014, 276(1/2): 236-239.
VALVASSORI S S, AGUIAR-GERALDO J M, POSSAMAI-DELLA T, et al. Depressive-like behavior accompanies neuroinflammation in an animal model of bipolar disorder symptoms induced by ouabain[J]. Pharmacol Biochem Behav, 2022, 219: 173434.
FILHO A J M C, CUNHA N L, DE ARAÚJO RODRIGUES P, et al. Doxycycline reverses cognitive impairment, neuroinflammation and oxidative imbalance induced by D-amphetamine mania model in mice: a promising drug repurposing for bipolar disorder treatment?[J]. Eur Neuropsychopharmacol, 2021, 42: 57-74.
NASCIMENTO C, NUNES P V, SUEMOTO C K, et al. Differential levels of inflammatory and neuroendocrine markers in the hippocampus and anterior cingulate cortex of bipolar disorder subjects: a post-mortem study[J]. Brain Behav Immun, 2020, 90: 286-293.
NASCIMENTO C, NUNES P V, LEITE R E P, et al. The relationship of neuropsychiatric symptoms with inflammatory markers in the hippocampus and cingulate cortex of bipolar disorder subjects: a post-mortem study[J]. J Psychiatr Res, 2024, 173: 25-33.
SÖDERLUND J, OLSSON S K, SAMUELSSON M, et al. Elevation of cerebrospinal fluid interleukin-1ß in bipolar disorder[J]. J Psychiatry Neurosci, 2011, 36(2): 114-118.
ISGREN A, JAKOBSSON J, PÅLSSON E, et al. Increased cerebrospinal fluid interleukin-8 in bipolar disorder patients associated with lithium and antipsychotic treatment[J]. Brain Behav Immun, 2015, 43: 198-204.
ISGREN A, SELLGREN C, EKMAN C J, et al. Markers of neuroinflammation and neuronal injury in bipolar disorder: relation to prospective clinical outcomes[J]. Brain Behav Immun, 2017, 65: 195-201.
PATEL J P, FREY B N. Disruption in the blood-brain barrier: the missing link between brain and body inflammation in bipolar disorder?[J]. Neural Plast, 2015, 2015: 708306.
KAMINTSKY L, CAIRNS K A, VEKSLER R, et al. Blood-brain barrier imaging as a potential biomarker for bipolar disorder progression[J]. Neuroimage Clin, 2020, 26: 102049.
STERTZ L, MAGALHÃES P V S, KAPCZINSKI F. Is bipolar disorder an inflammatory condition? The relevance of microglial activation[J]. Curr Opin Psychiatry, 2013, 26(1): 19-26.
BENNO HAARMAN B C M, DER LEK R F R V, DE GROOT J C, et al. Neuroinflammation in bipolar disorder - A [(11)C]-(R)-PK11195 positron emission tomography study[J]. Brain Behav Immun, 2014, 40: 219-225.
HAARMAN B C, BURGER H, DOORDUIN J, et al. Volume, metabolites and neuroinflammation of the hippocampus in bipolar disorder - A combined magnetic resonance imaging and positron emission tomography study[J]. Brain Behav Immun, 2016, 56: 21-33.
VADODARIA K C, MENDES A P D, MEI A, et al. Altered neuronal support and inflammatory response in bipolar disorder patient-derived astrocytes[J]. Stem Cell Reports, 2021, 16(4): 825-835.
ZHANG P F, HUANG H M, GAO X L, et al. Involvement of kynurenine metabolism in bipolar disorder: an updated review[J]. Front Psychiatry, 2021, 12: 677039.
van den AMEELE S, van NUIJS A L, LAI F Y, et al. A mood state-specific interaction between kynurenine metabolism and inflammation is present in bipolar disorder[J]. Bipolar Disord, 2020, 22(1): 59-69.
HAROON E, MILLER A H. Inflammation effects on glutamate as a pathway to neuroprogression in mood disorders[J]. Mod Trends Pharmacopsychiatry, 2017, 31: 37-55.
LONG J Y, LI B, DING P, et al. Correlations between multimodal neuroimaging and peripheral inflammation in different subtypes and mood states of bipolar disorder: a systematic review[J]. Int J Bipolar Disord, 2024, 12(1): 5.
BENEDETTI F, POLETTI S, HOOGENBOEZEM T A, et al. Inflammatory cytokines influence measures of white matter integrity in Bipolar Disorder[J]. J Affect Disord, 2016, 202: 1-9.
TSENG H H, CHANG H H, WEI S Y, et al. Peripheral inflammation is associated with dysfunctional corticostriatal circuitry and executive dysfunction in bipolar disorder patients[J]. Brain Behav Immun, 2021, 91: 695-702.
MANSUR R B, DELGADO-PERAZA F, SUBRAMANIAPILLAI M, et al. Extracellular vesicle biomarkers reveal inhibition of neuroinflammation by infliximab in association with antidepressant response in adults with bipolar depression[J]. Cells, 2020, 9(4): 895.
SAKRAJDA K, SZCZEPANKIEWICZ A. Inflammation-related changes in mood disorders and the immunomodulatory role of lithium[J]. Int J Mol Sci, 2021, 22(4): 1532.
GÖTTERT R, FIDZINSKI P, KRAUS L, et al. Lithium inhibits tryptophan catabolism via the inflammation-induced kynurenine pathway in human microglia[J]. Glia, 2022, 70(3): 558-571.
van den AMEELE S, van DIERMEN L, STAELS W, et al. The effect of mood-stabilizing drugs on cytokine levels in bipolar disorder: a systematic review[J]. J Affect Disord, 2016, 203: 364-373.
ROSENBLAT J D, KAKAR R, BERK M, et al. Anti-inflammatory agents in the treatment of bipolar depression: a systematic review and meta-analysis[J]. Bipolar Disord, 2016, 18(2): 89-101.
... 脑脊液(cerebrospinal fluid,CSF)在大脑的免疫反应中发挥着重要作用,其中含有的免疫细胞及产生的细胞因子可以反映出大脑的免疫状态.先前的一项研究对比了BD患者和健康对照者CSF中细胞因子浓度,发现BD患者CSF中IL-1β水平升高,IL-6水平降低[17].另一项研究表明与对照组相比,BD患者CSF中炎症相关细胞因子,如IL-8、单核细胞趋化蛋白1(monocyte chemoattractant protein1,MCP-1)、几丁质酶样蛋白(chitinase-3 like protein 1,CHI3L1)浓度更高[18];对这些患者进行6~7年的前瞻性随访,发现基线MCP-1浓度与躁狂/轻躁狂发作和随访期间的住院治疗呈正相关,CHI3L1浓度与躁狂/轻躁狂发作和精神病性症状的发生呈负相关[19].这些结果说明了CSF中炎症相关细胞因子可能与临床症状具有相关性,体现了CNS中复杂的免疫炎症机制.然而,目前尚不清楚BD受试者脑脊液中较高水平的细胞因子是外周免疫细胞浸润的结果,还是神经细胞激活的产物. ...
1
... 脑脊液(cerebrospinal fluid,CSF)在大脑的免疫反应中发挥着重要作用,其中含有的免疫细胞及产生的细胞因子可以反映出大脑的免疫状态.先前的一项研究对比了BD患者和健康对照者CSF中细胞因子浓度,发现BD患者CSF中IL-1β水平升高,IL-6水平降低[17].另一项研究表明与对照组相比,BD患者CSF中炎症相关细胞因子,如IL-8、单核细胞趋化蛋白1(monocyte chemoattractant protein1,MCP-1)、几丁质酶样蛋白(chitinase-3 like protein 1,CHI3L1)浓度更高[18];对这些患者进行6~7年的前瞻性随访,发现基线MCP-1浓度与躁狂/轻躁狂发作和随访期间的住院治疗呈正相关,CHI3L1浓度与躁狂/轻躁狂发作和精神病性症状的发生呈负相关[19].这些结果说明了CSF中炎症相关细胞因子可能与临床症状具有相关性,体现了CNS中复杂的免疫炎症机制.然而,目前尚不清楚BD受试者脑脊液中较高水平的细胞因子是外周免疫细胞浸润的结果,还是神经细胞激活的产物. ...
1
... 脑脊液(cerebrospinal fluid,CSF)在大脑的免疫反应中发挥着重要作用,其中含有的免疫细胞及产生的细胞因子可以反映出大脑的免疫状态.先前的一项研究对比了BD患者和健康对照者CSF中细胞因子浓度,发现BD患者CSF中IL-1β水平升高,IL-6水平降低[17].另一项研究表明与对照组相比,BD患者CSF中炎症相关细胞因子,如IL-8、单核细胞趋化蛋白1(monocyte chemoattractant protein1,MCP-1)、几丁质酶样蛋白(chitinase-3 like protein 1,CHI3L1)浓度更高[18];对这些患者进行6~7年的前瞻性随访,发现基线MCP-1浓度与躁狂/轻躁狂发作和随访期间的住院治疗呈正相关,CHI3L1浓度与躁狂/轻躁狂发作和精神病性症状的发生呈负相关[19].这些结果说明了CSF中炎症相关细胞因子可能与临床症状具有相关性,体现了CNS中复杂的免疫炎症机制.然而,目前尚不清楚BD受试者脑脊液中较高水平的细胞因子是外周免疫细胞浸润的结果,还是神经细胞激活的产物. ...
1
... 有研究提出血脑屏障(blood-brain barrier,BBB)受损模型将BD中的外周炎症和中枢炎症联系起来.在BD的病理情况下,外周的免疫系统被激活,产生了促炎因子,BBB完整性和选择通透性可能遭到破坏,从而允许炎症介质穿过屏障,进入CNS,激活大脑中的免疫细胞,引发一系列神经炎症反应;这些反应可能导致神经细胞和髓鞘的损伤,影响神经回路的功能,这在BD的发病机制中可能起着重要作用[20].关于这方面,KAMINTSKY等[21]招募36名BD患者和14名对照者,通过动态对比增强磁共振成像(dynamic contrast-enhanced magnetic resonance imaging,DCE-MRI)扫描定量评估BBB通透功能,并进行了临床和精神病学评估;研究发现,约28%的BD患者存在明显的BBB渗漏,且表现出更严重的抑郁和焦虑症状,而对照组中未出现此类情况,表明BBB功能障碍在BD发病及症状之间存在关联. ...
1
... 有研究提出血脑屏障(blood-brain barrier,BBB)受损模型将BD中的外周炎症和中枢炎症联系起来.在BD的病理情况下,外周的免疫系统被激活,产生了促炎因子,BBB完整性和选择通透性可能遭到破坏,从而允许炎症介质穿过屏障,进入CNS,激活大脑中的免疫细胞,引发一系列神经炎症反应;这些反应可能导致神经细胞和髓鞘的损伤,影响神经回路的功能,这在BD的发病机制中可能起着重要作用[20].关于这方面,KAMINTSKY等[21]招募36名BD患者和14名对照者,通过动态对比增强磁共振成像(dynamic contrast-enhanced magnetic resonance imaging,DCE-MRI)扫描定量评估BBB通透功能,并进行了临床和精神病学评估;研究发现,约28%的BD患者存在明显的BBB渗漏,且表现出更严重的抑郁和焦虑症状,而对照组中未出现此类情况,表明BBB功能障碍在BD发病及症状之间存在关联. ...