Primary immune thrombocytopenia (ITP) is an acquired autoimmune disease characterized by isolated thrombocytopenia resulting from increased platelet destruction and impaired platelet production. Although the majority of patients have a relatively good prognosis, 10%‒20% of children and up to 75% of adults may progress to chronic primary immune thrombocytopenia (CITP). These patients exhibit poor response to multiple therapies, leading to a significant decline in quality of life. At present, the treatment strategies for CITP mainly include first-line therapies such as glucocorticoids and gamma globulin, and second-line therapies such as thrombopoietin receptor agonists (TPO-RAs), rituximab, immunosuppressants, and splenectomy. In recent years, with the in-depth research on CITP, some new biological drugs and immunotherapies, such as Fcγ receptor (FcγR) signal transduction inhibitors, neonatal Fc receptor inhibitors, complement inhibitors, immune-cell-targeted therapies, platelet desialylation, umbilical cord mesenchymal stem cell therapy, and chimeric antigen receptor T cell immunotherapy, have shown good therapeutic potential. By targeting specific pathways in the pathogenesis of CITP, these novel therapies aim to achieve individualized precision treatment, thereby providing patients with more effective therapeutic options. This article reviews the pathogenesis, second-line treatment approaches, and therapeutic advances in CITP.
HUANG Zhouxuan, SHAO Jingbo. Research progress in the treatment of chronic primary immune thrombocytopenia. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2025, 45(4): 508-516 doi:10.3969/j.issn.1674-8115.2025.04.014
T细胞失调在CITP发病机制中发挥重要作用。调节性T细胞(regulatory T cell,Treg细胞)的数量减少或功能障碍导致自身抗体产生从而增加血小板破坏。Treg细胞的转录调节因子叉头框蛋白P3的启动子高甲基化可导致Treg细胞异常[9]。Treg数量减少和功能异常,或其他因素(如缺氧引起的缺氧诱导因子-1α),通过扰乱Treg细胞/辅助性T细胞(helper T cell,Th细胞)17轴平衡,继而导致Thl/Th2细胞免疫失衡,最终触发抗体介导的自身免疫反应[10-11]。这导致了外周免疫耐受的丧失,引发了一系列关键事件,主要包括滤泡Th细胞通过白介素-21(interleukin-21,IL-21)分泌和CD40/CD154相互作用刺激B细胞增殖分化为产生抗血小板抗体的浆细胞,以及激活细胞毒性T淋巴细胞(cytotoxic T lymphocyte,CTL)并诱导其增殖,进而介导其对血小板的细胞毒性作用等[12]。CTL在诱导血小板溶解和清除中起直接作用。细胞毒性T淋巴细胞相关蛋白4(cytotoxic T-lymphocyte-associated protein 4,CTLA4)异常表达显著活跃,可致T细胞过度活化,增强对血小板的免疫攻击[13]。
重组人血小板生成素(recombinant human thrombopoietin,rhTPO)是通过基因重组技术在仓鼠卵巢细胞中表达和纯化的糖基化重组人血小板生成素,为中国自主研发并上市的血小板刺激药物,此前其适应证已扩展至成人CITP。研究[19]报道105例ITP患者接受rhTPO治疗后,总体反应率为82.86%,其中接受大剂量rhTPO治疗的ITP患者总体缓解率超90%,其有效率和早期应答率优于低剂量组。另一项随机对照研究[20]显示,rhTPO在糖皮质激素耐药或复发的CITP患者中耐受性良好,可显著增加CITP患者血小板计数,且大剂量rhTPO单药治疗优于糖皮质激素单药治疗或标准剂量rhTPO联合糖皮质激素治疗。此外,一项针对儿童CITP患者的Ⅲ期第二阶段临床试验[21]中,rhTPO组的总体有效率(57.9%)优于安慰剂组(13.3%),该研究为rhTPO扩展至儿童青少年CITP适应证提供了良好依据,推动其近期获得国家药品监督管理局批准。
艾曲泊帕和罗普司亭是目前应用较为广泛的TPO-RA。艾曲泊帕是一种小分子非肽激动剂,与TPO受体结合后,通过Janus激酶信号转导及转录激活因子(Janus kinase-signal transducer and activator of transcription,JAK-STAT)、丝氨酸/苏氨酸蛋白激酶和丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)途径产生信号转导,增加血小板生成。一项针对PITP/CITP患者的长期研究[22]显示,应用艾曲泊帕1至2周的时间,患者的反应率高达85.8%,并有52%的CITP患者能够实现持续缓解。罗普司亭是应用DNA重组技术构建的人促血小板生成素Fc肽融合蛋白,它与TPO受体结合,刺激MK增殖和分化,促进血小板生成。一项Ⅲ期临床研究[23]结果显示,罗普司亭生物仿制药QL0911使得61.8%的患者获得持续缓解。该研究表明QL0911可增加和维持ITP患者的血小板计数且暂未出现血栓风险,为ITP患者提供新的治疗选择。此外,多项临床研究和meta分析[24-27]均证实,罗普司亭能够迅速刺激CITP患者的骨髓产生更多血小板,且不良事件率低。对儿童CITP患者而言,多项研究[28-33]结果证实艾曲泊帕和罗普司亭具有良好的疗效,可持续地增加患儿血小板计数,显著减少出血事件。总体而言,艾曲泊帕和罗普司亭均可帮助CITP患者快速脱离严重出血风险,提升并维持安全范围的血小板计数,是CITP治疗中的重要药物选择。
新生儿Fc受体(neonatal Fc receptor,FcRn)是组织相容性复合体Ⅰ类分子成员,能在酸性环境下与IgG和白蛋白结合,通过阻止IgG降解并回收至细胞表面,延长其血清半衰期[57]。FcRn抑制剂可促进内源性IgG的溶酶体降解,缩短致病性IgG半衰期,可作为CITP治疗新靶点。洛利昔珠单抗(rozanolixizumab)和艾加莫德(efgartigimod)是最新开发的靶向FcRn的药物,它们通过结合FcRn受体,加速自身免疫性疾病病理性IgG降解。在一项Ⅱ期临床试验中,接受洛利昔珠单抗或艾加莫德治疗的PITP/CITP患者中近一半获得缓解[58]。
HUANG Zhouxuan was responsible for proposing writing ideas, collecting the literature and writing the review. SHAO Jingbo was responsible for checking and correcting the content of the review. Both authors have read the last version of paper and consented to submission.
利益冲突声明
所有作者声明不存在利益冲突。
COMPETING INTERESTS
Both authors disclose no relevant conflict of interests.
MOULIS G, COMONT T, ADOUE D. New insights into the epidemiology of immune thrombocytopenia in adult patients: impact for clinical practice[J]. Rev Med Interne, 2021, 42(1): 11-15.
Working Group of Chinese Guideline for the Diagnosis and Treatment of Childhood Primary Immune Thrombocytopenia, the Subspecialty Group of Hematologic Diseases, the Society of Pediatrics, Chinese Medical Association, the Editorial Board, Chinese Journal of Pediatrics. Adapted guideline for the diagnosis and treatment of primary immune thrombocytopenia for Chinese children (2021)[J]. Chinese Journal of Pediatrics, 2021, 59(10): 810-819.
CANALES-HERRERIAS P, CRICKX E, BROKETA M, et al. High-affinity autoreactive plasma cells disseminate through multiple organs in patients with immune thrombocytopenic purpura[J]. J Clin Invest, 2022, 132(12): e153580.
SEMPLE J W, SCHIFFERLI A, COOPER N, et al. Immune thrombocytopenia: pathophysiology and impacts of romiplostim treatment[J]. Blood Rev, 2024, 67: 101222.
ZHANG Q H, HUANG M, THOMAS E R, et al. The role of platelet desialylation as a biomarker in primary immune thrombocytopenia: mechanisms and therapeutic perspectives[J]. Front Immunol, 2024, 15: 1409461.
NORRIS P A A, SEGEL G B, BURACK W R, et al. FcγRI and FcγRⅢ on splenic macrophages mediate phagocytosis of anti-glycoprotein Ⅱb/Ⅲa autoantibody-opsonized platelets in immune thrombocytopenia[J]. Haematologica, 2021, 106(1): 250-254.
CASTELLI R, LAMBERTENGHI DELILLIERS G, GIDARO A, et al. Complement activation in patients with immune thrombocytopenic purpura according to phases of disease course[J]. Clin Exp Immunol, 2020, 201(3): 258-265.
MARINI I, ZLAMAL J, FAUL C, et al. Autoantibody-mediated desialylation impairs human thrombopoiesis and platelet lifespan[J]. Haematologica, 2021, 106(1): 196-207.
WANG Z S, LANG T, LI Y, et al. Hypermethylation of the FOXP3 gene regulates Tregs immunodysregulation in chronic idiopathic thrombocytopenic purpura[J]. Allergol Immunopathol (Madr), 2024, 52(4): 30-37.
LIU C L, YANG H R, SHI W Y, et al. MicroRNA-mediated regulation of T helper type 17/regulatory T-cell balance in autoimmune disease[J]. Immunology, 2018, 155(4): 427-434.
GU H, WANG Z F, XIE X J, et al. HIF-1α induced by hypoxic condition regulates Treg/Th17 axis polarization in chronic immune thrombocytopenia[J]. Int Immunopharmacol, 2024, 131: 111810.
MITITELU A, ONISÂI M C, ROȘCA A, et al. Current understanding of immune thrombocytopenia: a review of pathogenesis and treatment options[J]. Int J Mol Sci, 2024, 25(4): 2163.
EL DEMERDASH D M, SABER M M, AYAD A, et al. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) gene polymorphisms in a cohort of Egyptian patients with immune thrombocytopenia (ITP)[J]. Blood Res, 2024, 59(1): 8.
RIVIÈRE E, THIÉBAUT R, LAZARO E, et al. Assessment of circulating blood lymphocytes in adult patients on rituximab to treat immune thrombocytopenia: circulating number of NK cells is associated with the response at 6 months[J]. Br J Haematol, 2023, 202(1): 159-167.
WANG M, FENG R, ZHANG J M, et al. Dysregulated megakaryocyte distribution associated with nestin+ mesenchymal stem cells in immune thrombocytopenia[J]. Blood Adv, 2019, 3(9): 1416-1428.
WANG X L, BI H, LIU L, et al. Efficacy and safety of high dose recombinant human thrombopoietin in the treatment of immune thrombocytopenia[J]. Platelets, 2023, 34(1): 2271568.
WANG S J, YANG R C, ZOU P, et al. A multicenter randomized controlled trial of recombinant human thrombopoietin treatment in patients with primary immune thrombocytopenia[J]. Int J Hematol, 2012, 96(2): 222-228.
MA J Y, ZHANG X L, ZHAO L B, et al. Efficacy and safety of recombinant human thrombopoietin for the treatment of chronic primary immune thrombocytopenia in children and adolescents: a multicentre, randomized, double-blind, placebo-controlled phase Ⅲ trial[J]. Br J Haematol, 2024, 205(6): 2403-2413.
WONG R S M, SALEH M N, KHELIF A, et al. Safety and efficacy of long-term treatment of chronic/persistent ITP with eltrombopag: final results of the EXTEND study[J]. Blood, 2017, 130(23): 2527-2536.
ZHOU H, HAN S Q, JIN J, et al. Efficacy and safety of QL0911 in adult patients with chronic primary immune thrombocytopenia: a multicenter, randomized, double-blind, placebo-controlled, phase Ⅲ trial[J]. J Transl Int Med, 2023, 11(4): 423-432.
YANG R, LIN L, YAO H, et al. Therapeutic options for adult patients with previously treated immune thrombocytopenia: a systematic review and network meta-analysis[J]. Hematology, 2019, 24(1): 290-299.
PUAVILAI T, THADANIPON K, RATTANASIRI S, et al. Treatment efficacy for adult persistent immune thrombocytopenia: a systematic review and network meta-analysis[J]. Br J Haematol, 2020, 188(3): 450-459.
NEUNERT C, TERRELL D R, ARNOLD D M, et al. American Society of Hematology 2019 guidelines for immune thrombocytopenia[J]. Blood Adv, 2019, 3(23): 3829-3866.
PULANIĆ D, BÁTOROVÁ A, BODÓ I, et al. Use of thrombopoietin receptor agonists in adults with immune thrombocytopenia: a systematic review and Central European expert consensus[J]. Ann Hematol, 2023, 102(4): 715-727.
HE X, RAN N Y, WANG T, et al. Efficacy and quality of life of romiplostim in adults and children with immune thrombocytopenia: a review[J]. Medicine (Baltimore), 2022, 101(50): e32345.
DE OLIVEIRA F L, SEQUEIRA F S, GARANITO M P. Safety and efficacy of romiplostim in children and adolescents with immune thrombocytopenia: a systematic review[J]. Hematol Transfus Cell Ther, 2023, 45(1): 83-89.
GRAINGER J D, KÜHNE T, HIPPENMEYER J, et al. Romiplostim in children with newly diagnosed or persistent primary immune thrombocytopenia[J]. Ann Hematol, 2021, 100(9): 2143-2154.
YANG L, SANG B H, YANG C H, et al. The long-term efficacy of eltrombopag in children with immune thrombocytopenia[J]. Ann Hematol, 2024, 103(8): 2721-2727.
DONG S Y, WANG Z F, WANG N, et al. Spotlight on eltrombopag concentration in pediatric immune thrombocytopenia: a single-center observational study in China[J]. Pediatr Investig, 2024, 8(1): 44-52.
WANG Z F, WANG N, JUNTAO O Y, et al. Long-term eltrombopag in children with chronic immune thrombocytopenia: a single-centre extended real-life observational study in China[J]. Br J Haematol, 2024, 204(3): 1017-1023.
AL-SAMKARI H, JIANG D, GERNSHEIMER T, et al. Adults with immune thrombocytopenia who switched to avatrombopag following prior treatment with eltrombopag or romiplostim: a multicentre US study[J]. Br J Haematol, 2022, 197(3): 359-366.
VIRK Z M, LEAF R K, KUTER D J, et al. Avatrombopag for adults with early versus chronic immune thrombocytopenia[J]. Am J Hematol, 2024, 99(2): 155-162.
OLADAPO A, KOLODNY S, VREDENBURG M, et al. Avatrombopag treatment response in patients with immune thrombocytopenia: the REAL-AVA 1.0 study[J]. Ther Adv Hematol, 2023, 14: 20406207231179856.
WANG Z F, ZHANG A J, XU Z J, et al. Efficacy and safety of avatrombopag in Chinese children with persistent and chronic primary immune thrombocytopenia: a multicentre observational retrospective study in China[J]. Br J Haematol, 2024, 204(5): 1958-1965.
MEI H, ZHOU H, HOU M, et al. Avatrombopag for adult chronic primary immune thrombocytopenia: a randomized phase 3 trial in China[J]. Res Pract Thromb Haemost, 2023, 7(6): 102158.
PATEL V L, MAHÉVAS M, LEE S Y, et al. Outcomes 5 years after response to rituximab therapy in children and adults with immune thrombocytopenia[J]. Blood, 2012, 119(25): 5989-5995.
SHAMOON R P, YASSIN A K, ALNUAIMY S L. Rituximab versus splenectomy in chronic primary ITP: experience of a single hematology clinic[J]. Mediterr J Hematol Infect Dis, 2024, 16(1): e2024019.
KHELLAF M, CHABROL A, MAHEVAS M, et al. Hydroxychloroquine is a good second-line treatment for adults with immune thrombocytopenia and positive antinuclear antibodies[J]. Am J Hematol, 2014, 89(2): 194-198.
BRIK-SIMON D, EFROS O, LEVINSKY Y, et al. Excellent response to treatment with hydroxychloroquine in pediatric patients with SLE-related immune thrombocytopenia[J]. Pediatr Blood Cancer, 2024, 71(5): e30911.
ABDALLAH G E M, ELBIIH E A S, SAYED D, et al. Revisiting the management of chronic ITP; a randomized controlled clinical trial[J]. Platelets, 2021, 32(2): 243-249.
PROVAN D, ARNOLD D M, BUSSEL J B, et al. Updated international consensus report on the investigation and management of primary immune thrombocytopenia[J]. Blood Adv, 2019, 3(22): 3780-3817.
VIANELLI N, PALANDRI F, POLVERELLI N, et al. Splenectomy as a curative treatment for immune thrombocytopenia: a retrospective analysis of 233 patients with a minimum follow up of 10 years[J]. Haematologica, 2013, 98(6): 875-880.
RODEGHIERO F. A critical appraisal of the evidence for the role of splenectomy in adults and children with ITP[J]. Br J Haematol, 2018, 181(2): 183-195.
THAI L H, MAHÉVAS M, ROUDOT-THORAVAL F, et al. Long-term complications of splenectomy in adult immune thrombocytopenia[J]. Medicine (Baltimore), 2016, 95(48): e5098.
BUSSEL J, ARNOLD D M, GROSSBARD E, et al. Fostamatinib for the treatment of adult persistent and chronic immune thrombocytopenia: results of two phase 3, randomized, placebo-controlled trials[J]. Am J Hematol, 2018, 93(7): 921-930.
COOPER N, ALTOMARE I, THOMAS M R, et al. Assessment of thrombotic risk during long-term treatment of immune thrombocytopenia with fostamatinib[J]. Ther Adv Hematol, 2021, 12: 20406207211010875.
LIU X F, ZHOU H, HU Y, et al. Sovleplenib (HMPL-523), a novel Syk inhibitor, for patients with primary immune thrombocytopenia in China: a randomised, double-blind, placebo-controlled, phase 1b/2 study[J]. Lancet Haematol, 2023, 10(6): e406-e418.
HU Y, LIU X F, ZHOU H, et al. Efficacy and safety of sovleplenib (HMPL-523) in adult patients with chronic primary immune thrombocytopenia in China (ESLIM-01): a randomised, double-blind, placebo-controlled, phase 3 study[J]. Lancet Haematol, 2024, 11(8): e567-e579.
KUTER D J, MAYER J, EFRAIM M, et al. Long-term treatment with rilzabrutinib in patients with immune thrombocytopenia[J]. Blood Adv, 2024, 8(7): 1715-1724.
KUTER D J, BUSSEL J B, GHANIMA W, et al. Rilzabrutinib versus placebo in adults and adolescents with persistent or chronic immune thrombocytopenia: LUNA 3 phase Ⅲ study[J]. Ther Adv Hematol, 2023, 14: 20406207231205431.
YAN S, ZHOU H, HUANG R B, et al. A phase 2 trial of orelabrutinib showing promising efficacy and safety in patients with persistent or chronic primary immune thrombocytopenia[J]. Am J Hematol, 2024, 99(7): 1392-1395.
BROOME C M, RÖTH A, KUTER D J, et al. Safety and efficacy of classical complement pathway inhibition with sutimlimab in chronic immune thrombocytopenia[J]. Blood Adv, 2023, 7(6): 987-996.
HU Y, WANG X W, YU S, et al. Neutralizations of IL-17A and IL-21 regulate regulatory T cell/T-helper 17 imbalance via T-helper 17-associated signaling pathway in immune thrombocytopenia[J]. Expert Opin Ther Targets, 2015, 19(6): 723-732.
SUN M L, WANG X J, WANG L, et al. The role of follicular regulatory T cells/follicular helper T cells in primary immune thrombocytopenia[J]. Acta Haematol, 2023, 146(4): 267-276.
ZHAO H Y, LI D Q, WANG J, et al. Effect and mechanism of low-dose chidamide on the treatment of primary immune thrombocytopenia[J]. Chinese Journal of Hematology, 2020, 41(4): 292-296.
HAN P P, HOU Y, ZHAO Y J, et al. Low-dose decitabine modulates T-cell homeostasis and restores immune tolerance in immune thrombocytopenia[J]. Blood, 2021, 138(8): 674-688.
ZHOU H, QIN P, LIU Q, et al. A prospective, multicenter study of low dose decitabine in adult patients with refractory immune thrombocytopenia[J]. Am J Hematol, 2019, 94(12): 1374-1381.
XU M, SHU J H, QIAN S X, et al. Zuberitamab, an innovative anti-CD20 monoclonal antibody, for patients with primary immune thrombocytopenia in China: a randomized, double-blind, placebo-controlled, phase 2 study[J]. Lancet Reg Health West Pac, 2024, 47: 101096.
CRICKX E, AUDIA S, ROBBINS A, et al. Daratumumab, an original approach for treating multi-refractory autoimmune cytopenia[J]. Haematologica, 2021, 106(12): 3198-3201.
CHEN Y F, XU Y M, LI H Y, et al. A novel anti-CD38 monoclonal antibody for treating immune thrombocytopenia[J]. N Engl J Med, 2024, 390(23): 2178-2190.
COLUNGA-PEDRAZA P R, PEÑA-LOZANO S P, SÁNCHEZ-RENDÓN E, et al. Oseltamivir as rescue therapy for persistent, chronic, or refractory immune thrombocytopenia: a case series and review of the literature[J]. J Thromb Thrombolysis, 2022, 54(2): 360-366.
CHEN Y F, XU Y M, CHI Y, et al. Efficacy and safety of human umbilical cord-derived mesenchymal stem cells in the treatment of refractory immune thrombocytopenia: a prospective, single arm, phase I trial[J]. Signal Transduct Target Ther, 2024, 9(1): 102.
ZHOU J, XU Y Y, SHU J H, et al. GPⅠbα CAAR T cells function like a Trojan horse to eliminate autoreactive B cells to treat immune thrombocytopenia[J]. Haematologica, 2024, 109(7): 2256-2270.
HU Y, WANG Z F, MA J Y, et al. The early and rapid response to daratumumab in children with chronic refractory immune thrombocytopenia from a referral single centre of China[J]. Br J Haematol, 2024, 205(1): 300-305.
MINGOT-CASTELLANO M E, BASTIDA J M, GHANIMA W, et al. Avatrombopag plus fostamatinib combination as treatment in patients with multirefractory immune thrombocytopenia[J]. Br J Haematol, 2024, 205(4): 1551-1555.
... T细胞失调在CITP发病机制中发挥重要作用.调节性T细胞(regulatory T cell,Treg细胞)的数量减少或功能障碍导致自身抗体产生从而增加血小板破坏.Treg细胞的转录调节因子叉头框蛋白P3的启动子高甲基化可导致Treg细胞异常[9].Treg数量减少和功能异常,或其他因素(如缺氧引起的缺氧诱导因子-1α),通过扰乱Treg细胞/辅助性T细胞(helper T cell,Th细胞)17轴平衡,继而导致Thl/Th2细胞免疫失衡,最终触发抗体介导的自身免疫反应[10-11].这导致了外周免疫耐受的丧失,引发了一系列关键事件,主要包括滤泡Th细胞通过白介素-21(interleukin-21,IL-21)分泌和CD40/CD154相互作用刺激B细胞增殖分化为产生抗血小板抗体的浆细胞,以及激活细胞毒性T淋巴细胞(cytotoxic T lymphocyte,CTL)并诱导其增殖,进而介导其对血小板的细胞毒性作用等[12].CTL在诱导血小板溶解和清除中起直接作用.细胞毒性T淋巴细胞相关蛋白4(cytotoxic T-lymphocyte-associated protein 4,CTLA4)异常表达显著活跃,可致T细胞过度活化,增强对血小板的免疫攻击[13]. ...
1
... T细胞失调在CITP发病机制中发挥重要作用.调节性T细胞(regulatory T cell,Treg细胞)的数量减少或功能障碍导致自身抗体产生从而增加血小板破坏.Treg细胞的转录调节因子叉头框蛋白P3的启动子高甲基化可导致Treg细胞异常[9].Treg数量减少和功能异常,或其他因素(如缺氧引起的缺氧诱导因子-1α),通过扰乱Treg细胞/辅助性T细胞(helper T cell,Th细胞)17轴平衡,继而导致Thl/Th2细胞免疫失衡,最终触发抗体介导的自身免疫反应[10-11].这导致了外周免疫耐受的丧失,引发了一系列关键事件,主要包括滤泡Th细胞通过白介素-21(interleukin-21,IL-21)分泌和CD40/CD154相互作用刺激B细胞增殖分化为产生抗血小板抗体的浆细胞,以及激活细胞毒性T淋巴细胞(cytotoxic T lymphocyte,CTL)并诱导其增殖,进而介导其对血小板的细胞毒性作用等[12].CTL在诱导血小板溶解和清除中起直接作用.细胞毒性T淋巴细胞相关蛋白4(cytotoxic T-lymphocyte-associated protein 4,CTLA4)异常表达显著活跃,可致T细胞过度活化,增强对血小板的免疫攻击[13]. ...
1
... T细胞失调在CITP发病机制中发挥重要作用.调节性T细胞(regulatory T cell,Treg细胞)的数量减少或功能障碍导致自身抗体产生从而增加血小板破坏.Treg细胞的转录调节因子叉头框蛋白P3的启动子高甲基化可导致Treg细胞异常[9].Treg数量减少和功能异常,或其他因素(如缺氧引起的缺氧诱导因子-1α),通过扰乱Treg细胞/辅助性T细胞(helper T cell,Th细胞)17轴平衡,继而导致Thl/Th2细胞免疫失衡,最终触发抗体介导的自身免疫反应[10-11].这导致了外周免疫耐受的丧失,引发了一系列关键事件,主要包括滤泡Th细胞通过白介素-21(interleukin-21,IL-21)分泌和CD40/CD154相互作用刺激B细胞增殖分化为产生抗血小板抗体的浆细胞,以及激活细胞毒性T淋巴细胞(cytotoxic T lymphocyte,CTL)并诱导其增殖,进而介导其对血小板的细胞毒性作用等[12].CTL在诱导血小板溶解和清除中起直接作用.细胞毒性T淋巴细胞相关蛋白4(cytotoxic T-lymphocyte-associated protein 4,CTLA4)异常表达显著活跃,可致T细胞过度活化,增强对血小板的免疫攻击[13]. ...
1
... T细胞失调在CITP发病机制中发挥重要作用.调节性T细胞(regulatory T cell,Treg细胞)的数量减少或功能障碍导致自身抗体产生从而增加血小板破坏.Treg细胞的转录调节因子叉头框蛋白P3的启动子高甲基化可导致Treg细胞异常[9].Treg数量减少和功能异常,或其他因素(如缺氧引起的缺氧诱导因子-1α),通过扰乱Treg细胞/辅助性T细胞(helper T cell,Th细胞)17轴平衡,继而导致Thl/Th2细胞免疫失衡,最终触发抗体介导的自身免疫反应[10-11].这导致了外周免疫耐受的丧失,引发了一系列关键事件,主要包括滤泡Th细胞通过白介素-21(interleukin-21,IL-21)分泌和CD40/CD154相互作用刺激B细胞增殖分化为产生抗血小板抗体的浆细胞,以及激活细胞毒性T淋巴细胞(cytotoxic T lymphocyte,CTL)并诱导其增殖,进而介导其对血小板的细胞毒性作用等[12].CTL在诱导血小板溶解和清除中起直接作用.细胞毒性T淋巴细胞相关蛋白4(cytotoxic T-lymphocyte-associated protein 4,CTLA4)异常表达显著活跃,可致T细胞过度活化,增强对血小板的免疫攻击[13]. ...
1
... T细胞失调在CITP发病机制中发挥重要作用.调节性T细胞(regulatory T cell,Treg细胞)的数量减少或功能障碍导致自身抗体产生从而增加血小板破坏.Treg细胞的转录调节因子叉头框蛋白P3的启动子高甲基化可导致Treg细胞异常[9].Treg数量减少和功能异常,或其他因素(如缺氧引起的缺氧诱导因子-1α),通过扰乱Treg细胞/辅助性T细胞(helper T cell,Th细胞)17轴平衡,继而导致Thl/Th2细胞免疫失衡,最终触发抗体介导的自身免疫反应[10-11].这导致了外周免疫耐受的丧失,引发了一系列关键事件,主要包括滤泡Th细胞通过白介素-21(interleukin-21,IL-21)分泌和CD40/CD154相互作用刺激B细胞增殖分化为产生抗血小板抗体的浆细胞,以及激活细胞毒性T淋巴细胞(cytotoxic T lymphocyte,CTL)并诱导其增殖,进而介导其对血小板的细胞毒性作用等[12].CTL在诱导血小板溶解和清除中起直接作用.细胞毒性T淋巴细胞相关蛋白4(cytotoxic T-lymphocyte-associated protein 4,CTLA4)异常表达显著活跃,可致T细胞过度活化,增强对血小板的免疫攻击[13]. ...
... 重组人血小板生成素(recombinant human thrombopoietin,rhTPO)是通过基因重组技术在仓鼠卵巢细胞中表达和纯化的糖基化重组人血小板生成素,为中国自主研发并上市的血小板刺激药物,此前其适应证已扩展至成人CITP.研究[19]报道105例ITP患者接受rhTPO治疗后,总体反应率为82.86%,其中接受大剂量rhTPO治疗的ITP患者总体缓解率超90%,其有效率和早期应答率优于低剂量组.另一项随机对照研究[20]显示,rhTPO在糖皮质激素耐药或复发的CITP患者中耐受性良好,可显著增加CITP患者血小板计数,且大剂量rhTPO单药治疗优于糖皮质激素单药治疗或标准剂量rhTPO联合糖皮质激素治疗.此外,一项针对儿童CITP患者的Ⅲ期第二阶段临床试验[21]中,rhTPO组的总体有效率(57.9%)优于安慰剂组(13.3%),该研究为rhTPO扩展至儿童青少年CITP适应证提供了良好依据,推动其近期获得国家药品监督管理局批准. ...
1
... 重组人血小板生成素(recombinant human thrombopoietin,rhTPO)是通过基因重组技术在仓鼠卵巢细胞中表达和纯化的糖基化重组人血小板生成素,为中国自主研发并上市的血小板刺激药物,此前其适应证已扩展至成人CITP.研究[19]报道105例ITP患者接受rhTPO治疗后,总体反应率为82.86%,其中接受大剂量rhTPO治疗的ITP患者总体缓解率超90%,其有效率和早期应答率优于低剂量组.另一项随机对照研究[20]显示,rhTPO在糖皮质激素耐药或复发的CITP患者中耐受性良好,可显著增加CITP患者血小板计数,且大剂量rhTPO单药治疗优于糖皮质激素单药治疗或标准剂量rhTPO联合糖皮质激素治疗.此外,一项针对儿童CITP患者的Ⅲ期第二阶段临床试验[21]中,rhTPO组的总体有效率(57.9%)优于安慰剂组(13.3%),该研究为rhTPO扩展至儿童青少年CITP适应证提供了良好依据,推动其近期获得国家药品监督管理局批准. ...
1
... 重组人血小板生成素(recombinant human thrombopoietin,rhTPO)是通过基因重组技术在仓鼠卵巢细胞中表达和纯化的糖基化重组人血小板生成素,为中国自主研发并上市的血小板刺激药物,此前其适应证已扩展至成人CITP.研究[19]报道105例ITP患者接受rhTPO治疗后,总体反应率为82.86%,其中接受大剂量rhTPO治疗的ITP患者总体缓解率超90%,其有效率和早期应答率优于低剂量组.另一项随机对照研究[20]显示,rhTPO在糖皮质激素耐药或复发的CITP患者中耐受性良好,可显著增加CITP患者血小板计数,且大剂量rhTPO单药治疗优于糖皮质激素单药治疗或标准剂量rhTPO联合糖皮质激素治疗.此外,一项针对儿童CITP患者的Ⅲ期第二阶段临床试验[21]中,rhTPO组的总体有效率(57.9%)优于安慰剂组(13.3%),该研究为rhTPO扩展至儿童青少年CITP适应证提供了良好依据,推动其近期获得国家药品监督管理局批准. ...
1
... 艾曲泊帕和罗普司亭是目前应用较为广泛的TPO-RA.艾曲泊帕是一种小分子非肽激动剂,与TPO受体结合后,通过Janus激酶信号转导及转录激活因子(Janus kinase-signal transducer and activator of transcription,JAK-STAT)、丝氨酸/苏氨酸蛋白激酶和丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)途径产生信号转导,增加血小板生成.一项针对PITP/CITP患者的长期研究[22]显示,应用艾曲泊帕1至2周的时间,患者的反应率高达85.8%,并有52%的CITP患者能够实现持续缓解.罗普司亭是应用DNA重组技术构建的人促血小板生成素Fc肽融合蛋白,它与TPO受体结合,刺激MK增殖和分化,促进血小板生成.一项Ⅲ期临床研究[23]结果显示,罗普司亭生物仿制药QL0911使得61.8%的患者获得持续缓解.该研究表明QL0911可增加和维持ITP患者的血小板计数且暂未出现血栓风险,为ITP患者提供新的治疗选择.此外,多项临床研究和meta分析[24-27]均证实,罗普司亭能够迅速刺激CITP患者的骨髓产生更多血小板,且不良事件率低.对儿童CITP患者而言,多项研究[28-33]结果证实艾曲泊帕和罗普司亭具有良好的疗效,可持续地增加患儿血小板计数,显著减少出血事件.总体而言,艾曲泊帕和罗普司亭均可帮助CITP患者快速脱离严重出血风险,提升并维持安全范围的血小板计数,是CITP治疗中的重要药物选择. ...
1
... 艾曲泊帕和罗普司亭是目前应用较为广泛的TPO-RA.艾曲泊帕是一种小分子非肽激动剂,与TPO受体结合后,通过Janus激酶信号转导及转录激活因子(Janus kinase-signal transducer and activator of transcription,JAK-STAT)、丝氨酸/苏氨酸蛋白激酶和丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)途径产生信号转导,增加血小板生成.一项针对PITP/CITP患者的长期研究[22]显示,应用艾曲泊帕1至2周的时间,患者的反应率高达85.8%,并有52%的CITP患者能够实现持续缓解.罗普司亭是应用DNA重组技术构建的人促血小板生成素Fc肽融合蛋白,它与TPO受体结合,刺激MK增殖和分化,促进血小板生成.一项Ⅲ期临床研究[23]结果显示,罗普司亭生物仿制药QL0911使得61.8%的患者获得持续缓解.该研究表明QL0911可增加和维持ITP患者的血小板计数且暂未出现血栓风险,为ITP患者提供新的治疗选择.此外,多项临床研究和meta分析[24-27]均证实,罗普司亭能够迅速刺激CITP患者的骨髓产生更多血小板,且不良事件率低.对儿童CITP患者而言,多项研究[28-33]结果证实艾曲泊帕和罗普司亭具有良好的疗效,可持续地增加患儿血小板计数,显著减少出血事件.总体而言,艾曲泊帕和罗普司亭均可帮助CITP患者快速脱离严重出血风险,提升并维持安全范围的血小板计数,是CITP治疗中的重要药物选择. ...
1
... 艾曲泊帕和罗普司亭是目前应用较为广泛的TPO-RA.艾曲泊帕是一种小分子非肽激动剂,与TPO受体结合后,通过Janus激酶信号转导及转录激活因子(Janus kinase-signal transducer and activator of transcription,JAK-STAT)、丝氨酸/苏氨酸蛋白激酶和丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)途径产生信号转导,增加血小板生成.一项针对PITP/CITP患者的长期研究[22]显示,应用艾曲泊帕1至2周的时间,患者的反应率高达85.8%,并有52%的CITP患者能够实现持续缓解.罗普司亭是应用DNA重组技术构建的人促血小板生成素Fc肽融合蛋白,它与TPO受体结合,刺激MK增殖和分化,促进血小板生成.一项Ⅲ期临床研究[23]结果显示,罗普司亭生物仿制药QL0911使得61.8%的患者获得持续缓解.该研究表明QL0911可增加和维持ITP患者的血小板计数且暂未出现血栓风险,为ITP患者提供新的治疗选择.此外,多项临床研究和meta分析[24-27]均证实,罗普司亭能够迅速刺激CITP患者的骨髓产生更多血小板,且不良事件率低.对儿童CITP患者而言,多项研究[28-33]结果证实艾曲泊帕和罗普司亭具有良好的疗效,可持续地增加患儿血小板计数,显著减少出血事件.总体而言,艾曲泊帕和罗普司亭均可帮助CITP患者快速脱离严重出血风险,提升并维持安全范围的血小板计数,是CITP治疗中的重要药物选择. ...
... 艾曲泊帕和罗普司亭是目前应用较为广泛的TPO-RA.艾曲泊帕是一种小分子非肽激动剂,与TPO受体结合后,通过Janus激酶信号转导及转录激活因子(Janus kinase-signal transducer and activator of transcription,JAK-STAT)、丝氨酸/苏氨酸蛋白激酶和丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)途径产生信号转导,增加血小板生成.一项针对PITP/CITP患者的长期研究[22]显示,应用艾曲泊帕1至2周的时间,患者的反应率高达85.8%,并有52%的CITP患者能够实现持续缓解.罗普司亭是应用DNA重组技术构建的人促血小板生成素Fc肽融合蛋白,它与TPO受体结合,刺激MK增殖和分化,促进血小板生成.一项Ⅲ期临床研究[23]结果显示,罗普司亭生物仿制药QL0911使得61.8%的患者获得持续缓解.该研究表明QL0911可增加和维持ITP患者的血小板计数且暂未出现血栓风险,为ITP患者提供新的治疗选择.此外,多项临床研究和meta分析[24-27]均证实,罗普司亭能够迅速刺激CITP患者的骨髓产生更多血小板,且不良事件率低.对儿童CITP患者而言,多项研究[28-33]结果证实艾曲泊帕和罗普司亭具有良好的疗效,可持续地增加患儿血小板计数,显著减少出血事件.总体而言,艾曲泊帕和罗普司亭均可帮助CITP患者快速脱离严重出血风险,提升并维持安全范围的血小板计数,是CITP治疗中的重要药物选择. ...
1
... 艾曲泊帕和罗普司亭是目前应用较为广泛的TPO-RA.艾曲泊帕是一种小分子非肽激动剂,与TPO受体结合后,通过Janus激酶信号转导及转录激活因子(Janus kinase-signal transducer and activator of transcription,JAK-STAT)、丝氨酸/苏氨酸蛋白激酶和丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)途径产生信号转导,增加血小板生成.一项针对PITP/CITP患者的长期研究[22]显示,应用艾曲泊帕1至2周的时间,患者的反应率高达85.8%,并有52%的CITP患者能够实现持续缓解.罗普司亭是应用DNA重组技术构建的人促血小板生成素Fc肽融合蛋白,它与TPO受体结合,刺激MK增殖和分化,促进血小板生成.一项Ⅲ期临床研究[23]结果显示,罗普司亭生物仿制药QL0911使得61.8%的患者获得持续缓解.该研究表明QL0911可增加和维持ITP患者的血小板计数且暂未出现血栓风险,为ITP患者提供新的治疗选择.此外,多项临床研究和meta分析[24-27]均证实,罗普司亭能够迅速刺激CITP患者的骨髓产生更多血小板,且不良事件率低.对儿童CITP患者而言,多项研究[28-33]结果证实艾曲泊帕和罗普司亭具有良好的疗效,可持续地增加患儿血小板计数,显著减少出血事件.总体而言,艾曲泊帕和罗普司亭均可帮助CITP患者快速脱离严重出血风险,提升并维持安全范围的血小板计数,是CITP治疗中的重要药物选择. ...
0
0
0
0
1
... 艾曲泊帕和罗普司亭是目前应用较为广泛的TPO-RA.艾曲泊帕是一种小分子非肽激动剂,与TPO受体结合后,通过Janus激酶信号转导及转录激活因子(Janus kinase-signal transducer and activator of transcription,JAK-STAT)、丝氨酸/苏氨酸蛋白激酶和丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)途径产生信号转导,增加血小板生成.一项针对PITP/CITP患者的长期研究[22]显示,应用艾曲泊帕1至2周的时间,患者的反应率高达85.8%,并有52%的CITP患者能够实现持续缓解.罗普司亭是应用DNA重组技术构建的人促血小板生成素Fc肽融合蛋白,它与TPO受体结合,刺激MK增殖和分化,促进血小板生成.一项Ⅲ期临床研究[23]结果显示,罗普司亭生物仿制药QL0911使得61.8%的患者获得持续缓解.该研究表明QL0911可增加和维持ITP患者的血小板计数且暂未出现血栓风险,为ITP患者提供新的治疗选择.此外,多项临床研究和meta分析[24-27]均证实,罗普司亭能够迅速刺激CITP患者的骨髓产生更多血小板,且不良事件率低.对儿童CITP患者而言,多项研究[28-33]结果证实艾曲泊帕和罗普司亭具有良好的疗效,可持续地增加患儿血小板计数,显著减少出血事件.总体而言,艾曲泊帕和罗普司亭均可帮助CITP患者快速脱离严重出血风险,提升并维持安全范围的血小板计数,是CITP治疗中的重要药物选择. ...
... 新生儿Fc受体(neonatal Fc receptor,FcRn)是组织相容性复合体Ⅰ类分子成员,能在酸性环境下与IgG和白蛋白结合,通过阻止IgG降解并回收至细胞表面,延长其血清半衰期[57].FcRn抑制剂可促进内源性IgG的溶酶体降解,缩短致病性IgG半衰期,可作为CITP治疗新靶点.洛利昔珠单抗(rozanolixizumab)和艾加莫德(efgartigimod)是最新开发的靶向FcRn的药物,它们通过结合FcRn受体,加速自身免疫性疾病病理性IgG降解.在一项Ⅱ期临床试验中,接受洛利昔珠单抗或艾加莫德治疗的PITP/CITP患者中近一半获得缓解[58]. ...
1
... 新生儿Fc受体(neonatal Fc receptor,FcRn)是组织相容性复合体Ⅰ类分子成员,能在酸性环境下与IgG和白蛋白结合,通过阻止IgG降解并回收至细胞表面,延长其血清半衰期[57].FcRn抑制剂可促进内源性IgG的溶酶体降解,缩短致病性IgG半衰期,可作为CITP治疗新靶点.洛利昔珠单抗(rozanolixizumab)和艾加莫德(efgartigimod)是最新开发的靶向FcRn的药物,它们通过结合FcRn受体,加速自身免疫性疾病病理性IgG降解.在一项Ⅱ期临床试验中,接受洛利昔珠单抗或艾加莫德治疗的PITP/CITP患者中近一半获得缓解[58]. ...