上海交通大学学报(医学版), 2025, 45(5): 540-548 doi: 10.3969/j.issn.1674-8115.2025.05.002

前沿述评

地中海贫血基因治疗研究进展及思考

高欣洁,, 刘艳,, 王大威,

上海血液学研究所,组学与疾病全国重点实验室,国家转化医学研究中心(上海),上海交通大学医学院附属瑞金医院,上海 200025

Research progress and considerations for thalassemia gene therapy

GAO Xinjie,, LIU Yan,, WANG Dawei,

Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

通讯作者: 刘 艳,高级工程师,博士;电子信箱:ly30689@rjh.com.cn王大威,副研究员,博士;电子信箱:wangdawei@shsmu.edu.cn

编委: 邵碧云

收稿日期: 2024-12-26   接受日期: 2025-04-23   网络出版日期: 2025-05-22

基金资助: 国家自然科学基金.  82450107.  82000185
中央高校基本科研专项资金.  YG2022QN013.  YG2024QNB02
中国工程院咨询研究项目.  2021-DFY-2

Corresponding authors: LIU Yan, E-mail:ly30689@rjh.com.cnWANG Dawei, E-mail:wangdawei@shsmu.edu.cn.

Received: 2024-12-26   Accepted: 2025-04-23   Online: 2025-05-22

作者简介 About authors

高欣洁(2001—),女,硕士生;电子信箱:gxj0701@sjtu.edu.cn。 E-mail:gxj0701@sjtu.edu.cn

摘要

地中海贫血的传统治疗方式为定期输血和异基因造血干细胞移植(allogenic hematopoietic stem cell transplantation,allo-HSCT)。近年兴起的基因修饰自体造血干细胞移植是治愈输血依赖型地中海贫血(transfusion dependent thalassemia,TDT)的新策略,有望替代传统治疗手段,使TDT患者终身受益。地中海贫血基因治疗现有2种技术路线:将外源性β-珠蛋白基因转导造血干细胞(hematopoietic stem cell,HSC)的基因添加;利用CRISPR-Cas9系统重新激活γ-珠蛋白表达的基因编辑。该文结合已获批上市的药物和临床试验的研究进展,具体分析了2种路线各自的优势与局限性,讨论了目前地中海贫血基因治疗药物的有效性和安全性,以及干细胞体外扩增与干性维持、载体递送介导体内基因修饰等关联技术的未来攻克方向。在实现临床转化层面,该文就工艺开发困境、临床试验开展、监管审批流程、商业化及支付体系等临床试验面临的现阶段挑战,进行深入思考并阐述可行性解决方案。

关键词: 地中海贫血 ; 基因治疗 ; 自体造血干细胞移植 ; 基因编辑 ; 转化医学

Abstract

Traditional treatment modalities for thalassemia include regular blood transfusions and allogenic hematopoietic stem cell transplantation (allo-HSCT). In recent years, autologous transplantation of gene-modified hematopoietic stem cells has emerged as a new curative strategy for transfusion-dependent thalassemia (TDT),which has the potential to replace conventional treatments, and provide lifelong benefits for patients. There are two existing technical approaches for gene therapy of β-thalassemia: gene addition, which involves transducing exogenous β-globin genes into hematopoietic stem cells (HSCs), and gene editing, which utilizes CRISPR-Cas9 or other editing systems to re-activate the expression of γ-globin gene. This article summarizes the marketed products and research progress in clinical trials, aiming to analyze the respective advantages and limitations of these two approaches, and discusses the effectiveness and safety of current gene therapies for β-thalassemia, as well as the future directions for associated technologies, including ex vivo HSC expansion with maintenance of stemness and vector-mediated in vivo gene modification. In terms of clinical translational medicine, this article provides in-depth insights into promising solutions for contemporary challenges confronted in clinical trials, including process development challenges, clinical trial conduct, regulatory approval processes, commercialization and payment systems.

Keywords: thalassemia ; gene therapy ; autologous hematopoietic stem-cell transplantation ; gene editing ; translational medicine

PDF (1770KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

高欣洁, 刘艳, 王大威. 地中海贫血基因治疗研究进展及思考. 上海交通大学学报(医学版)[J], 2025, 45(5): 540-548 doi:10.3969/j.issn.1674-8115.2025.05.002

GAO Xinjie, LIU Yan, WANG Dawei. Research progress and considerations for thalassemia gene therapy. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2025, 45(5): 540-548 doi:10.3969/j.issn.1674-8115.2025.05.002

地中海贫血即珠蛋白生成障碍性贫血,是一类较为常见的遗传性疾病;患者体内珠蛋白基因突变或缺失,导致血红蛋白合成不足进而引起溶血性贫血1。中国长江以南省份的地中海贫血发病率较高,给公共卫生带来了严峻挑战。定期输血配合祛铁的传统治疗手段,仅能缓解症状;异基因造血干细胞移植(allogenic hematopoietic stem cell transplantation,allo-HSCT)受限于配型困难、费用高昂和移植相关并发症等问题,仅少数患者获得终身治愈2。基因治疗能够替代或修复缺陷的珠蛋白基因。现阶段运用基因添加或基因编辑策略的部分药物,如ZyntegloTM和CasgevyTM已获得上市许可且临床疗效良好3-4,为地中海贫血患者提供了新的临床治疗选择。尽管国内外在地中海贫血治疗领域取得了突破性进展2-4,基因治疗仍面临诸多挑战,例如病毒载体安全性、基因编辑的脱靶效应、造血干细胞(hematopoietic stem cell,HSC)体外扩增和干性维持等问题。

本文全面阐述地中海贫血基因治疗的最新研究和临床试验进展,分析基因添加、基因编辑各自的优势与局限性,并探讨基因治疗药物的有效性、安全性与相关技术的未来发展方向。同时,本文针对临床转化过程中的工艺开发、临床试验设计、监管审批流程、商业化和支付体系设计等多重困境,提出可行性解决方案,以期推动该领域从基础研究向临床应用转化。

1 地中海贫血概述

地中海贫血主要分为α型和β型,全球范围内约5%的人口携带α-地中海贫血基因5,而β-地中海贫血基因携带者占1.5%6。该疾病流行于撒哈拉以南非洲、地中海地区、中东以及东南亚,而中国长江以南省份地中海贫血携带者频率最高7。α-地中海贫血主要为缺失突变,β-地中海贫血则多为点突变或小片段缺失8,导致珠蛋白链合成不足或完全缺失。α/β链的缺陷程度影响临床表现,可分为静止型、轻型、中间型及重型。中国约有3 000万地中海贫血基因携带者,重型和中间型患者约30万人7。地中海贫血患者的珠蛋白链比例失衡,过剩肽链的包涵体造成氧化应激环境1,导致红细胞损伤、溶血以及骨髓腔扩大等病理变化。输血依赖型地中海贫血(transfusion dependent thalassemia,TDT)患者血红蛋白合成严重不足,需定期输血,易出现继发性铁过载,长期沉积将损害心、肝、胰等器官2

临床上通过体征、区域调查、家族史和血液学检查(如血红蛋白电泳)快速筛查并诊断地中海贫血。目前,定期输血和祛铁治疗是TDT患者的主要治疗手段,但仅能维持生存和缓解症状。TDT患者需每2~5周输血1次,维持血红蛋白水平在95~105 g/L2,终身治疗花费400~700万元人民币9。allo-HSCT是如今国内唯一能够治愈TDT的手段,由于移植成本高、年龄限制、全相合配型困难、移植后移植物抗宿主病(graft versus host disease,GVHD)和长期依赖免疫抑制剂等局限性,仅不到10%的患者真正获益10

2 地中海贫血新疗法——基因治疗

作为全球患者最多的单基因遗传病,血红蛋白病是基因治疗的理想对象。不同于allo-HSCT,基因修饰HSCT无需供体捐献及异体移植,克服干细胞资源短缺、配型困难及免疫排斥等问题。由于重型α-地中海贫血(Hb Bart′s胎儿水肿综合征)受累胎儿难以存活,故α-地中海贫血的研发投入较少,现今开展的基因治疗临床试验多针对β-地中海贫血。

地中海贫血基因治疗现有2种技术路线(图1):① 基因添加。慢病毒载体(lentiviral vector,LVV)导入功能正常的β-珠蛋白编码基因,恢复成人血红蛋白(adult hemoglobin,HbA)表达。以Bluebird Bio公司研发的Zynteglo™(beti-cel)为代表性药物3。② 基因编辑。利用CRISPR-Cas9破坏γ-珠蛋白的转录阻遏蛋白B-细胞淋巴瘤因子11A(B-cell lymphoma/leukemia 11A,BCL11A)的红系增强子区域,产生高水平胎儿血红蛋白(fetal hemoglobin,HbF)替代HbA。代表性药物为CRISPR Therapeutics和Vertex Pharmaceuticals研发的Casgevy™(exa-cel)4

图1

图1   地中海贫血基因治疗策略示意图

Note: HSCs—hematopoietic stem cells; Cas9—CRISPR-associated protein 9; sgRNA—single guide RNA; LV—lentiviral; AAV—adeno-associated virus; LNP—lipid nanoparticle.

Fig 1   Schematic diagram of thalassemia gene therapy strategies


2.1 慢病毒介导的β-珠蛋白基因添加

首个基于LVV的β-地中海贫血基因治疗药物Zynteglo™(beti-cel)于2019年6月、2022年8月先后获得欧盟药物管理局(EMA)与美国食品和药物监督管理局(FDA)的上市许可,用于治疗≥12岁非β00基因型的TDT患者。OTL-300采用骨内输注自体HSC疗法,Ⅰ/Ⅱ期试验中3例患儿摆脱输血依赖(transfusion independence,TI),并完成安全性和疗效的长期跟踪研究(NCT03275051)11。国内多家公司的LVV转导自体HSC产品已完成研究者发起的临床研究(investigator-initiated clinical trial,IIT),获批临床试验默示许可(investigational new drug,IND)并启动Ⅰ期临床试验,如HGI-001、KL003、BD211、GMCN508B(表1)。

表1   β-地中海贫血基因治疗的临床试验

Tab 1  Clinical trials of β-thalassemia gene therapy

Drug productSponsor

Status and

clinical trial identifier

Participant/nClinical trial result
Lentivirus-mediated β-globin gene addition
ZyntegloBluebird Bio

Phase Ⅰ/Ⅱ,

NCT01745120

22Transfusion independence (TI) occurred in 12 patients with non-β00 genotype and 3 patients with β00 genotype or IVS1-110 homozygous mutation[12]

Phase Ⅲ,

NCT02906202

24TI occurred in 20 patients with non-β00 genotype while the average Hb level was 117 g/L, and the median level of HbAT87Q was 87 g/L at the 12th month after infusion[13]

Phase Ⅲ,

NCT03207009

19One patient with β00 genotype had TI for ≥ 12 months, while the Hb level of 3 patients with TI for ≥ 6 months was up to 105136 g/L (HbAT87Q accounting for 95126 g/L)[3]
OTL-300Orchard TherapeuticsPhase Ⅰ/Ⅱ, NCT0245347710TI occurred in 3 pediatric patients, and red-cell transfusions were reduced in 4 patients[11]
HGI-001Hemu Gene Co., Ltd.

IIT,

NCT05745532

10The average Hb level of 5 patients was > 90 g/L during TI ≥ 12 months, with the median Hb level of 105 g/L at the most recent follow-up[14]
BD211BDgene Co., Ltd.

IIT,

NCT05015920

10Two patients with β00 genotype had TI for 25.5 months in average, with red blood cell lifespan being extended to more than 42 d[15]
KL003Kanglin Biotechnology

IIT,

ChiCTR2200055565

11The average neutrophil and platelet engraftment times were both 14 d. TI occurred in all patients, with the longest duration lasting 18 months[16]
GMCN508BGenmedicn BiopharmaIIT, NCT057625105Two patients with TDT had TI, including a 10-year-old pediatric patient with β0+ genotype
Gene editing to re-activate the expression of HbF
ST-400Sangamo TherapeuticsPhase Ⅰ/Ⅱ, NCT034323646The low transduction efficiency of HSCs resulted in no long-term therapeutic effect[17]
CTX001Vertex Pharmaceuticals

Phase Ⅲ,

NCT03655678

59The median duration of TI among 48 patients was 22.5 months, with a total Hb level of 131 g/L and HbF level of 119 g/L in average[4]
EDIT-301Editas Medicine

Phase Ⅰ/Ⅱ,

NCT05444894

9TI occurred in 7 patients, including 6 with follow-up ≥ 6 months, whose total Hb and HbF levels were 121 g/L and 109 g/L, respectively[18]
ET-01EdiGene Inc.IIT, NCT043909713One patient (β0+) had TI for>15 months, with a total Hb level of 110 g/L at the 18th month[19]
BRL-101BRL Medicine

Phase Ⅰ,

NCT05577312

10TI > 22 months occurred in all patients, including 5 with β00 genotype. The highest HbF level reached 140 g/L, with HbF-cells accounting for 98%99%[20]
RM-001Reforgene Medicine

Phase Ⅰ,

ChiCTR2300069244

12Twelve patients in Phase Ⅰ and 7 patients in IIT study had TI for> 6 months (including 13 with β00 genotype). Thirteen patients with ≥12 months of follow-up had an average HbF level of 117 g/L[21]
CS-101CorrectSequence TherapeuticsIIT, NCT062919618The first patient (β0+) had TI with HbF > 95 g/L at the 8th week

新窗口打开| 下载CSV


2.2 基因编辑重新激活HbF表达

Casgevy™(exa-cel,CTX001)是全球首款CRISPR/Cas9基因编辑疗法,2024年1月获FDA批准上市,Ⅲ期临床试验(NCT04208529)中52例受试者正在接受15年的长期随访。与CTX001作用机制相似的还有基于锌指蛋白酶的ST-400,以及国内2款产品ET-01和BRL-101。破坏γ-珠蛋白启动子的BCL11A结合位点,也是重启HbF的策略,例如基于Cas9的RM-001、基于AsCas12a的EDIT-301、基于腺嘌呤碱基编辑器(adenine base editor,ABE)的BEAM-101,以及基于变形式碱基编辑器的CS-101(表1)。

2.3 添加β-珠蛋白与重新表达HbF的优劣比较

2.3.1 外源性血红蛋白β亚基基因表达水平有限

患者异质性、转导效率、表达盒设计等为主要限制因素。已有的临床研究表明,年龄、基因型、以往输血频率及铁过载程度等影响治疗后β-珠蛋白表达水平。如在Zynteglo和KL003的试验中,病情较重的β00患者仅部分TI;在HSC增殖分化时基因座控制区调控的血红蛋白β亚基(hemoglobin subunit β,HBB)基因可能逐渐沉默,而无法实现终身治愈。为提高转导效率及载体拷贝数(vector copy number,VCN),需要考虑包装片段及前病毒的长度、包膜表面蛋白组成、HSC的LVV抗性、质粒共转染的复杂工艺、整合位点的染色质开放程度22、干细胞数量与干性等。保留β-珠蛋白HS2、HS3、HS4区“编码核心”23、构建靶向HSC的新型包膜BaEV或重组包膜蛋白24、添加转染HSC小分子增强剂(如Vectofusin-1、CsH、雷帕霉素等)25,可有针对性地提高转导效率。

病毒载体成本高昂且工艺改进难度大,阻碍基因添加疗法的临床转化。针对仅造成pre-mRNA异常剪接的缺陷基因,可应用无需载体的RNA疗法。已报道剪接转换寡核苷酸修复IVS2-654突变,反义寡核苷酸修复IVS1-110突变,人工转录因子gg1-VP64-HA靶向血红蛋白γ亚基(hemoglobin subunit γ,HBG)启动子26及诱饵寡核苷酸或microRNA破坏Oct-1MYB等γ-珠蛋白转录阻遏因子mRNA27

2.3.2 重启HbF表达的风险未知

正常成人的HbF水平不超过2%。HbF持续高表达被定义为遗传性持续性胎儿血红蛋白增多症(hereditary persistence fetal hemoglobin,HPFH),此类β-地中海贫血患者贫血较轻。γ-链代替β-链与过剩的α-链结合,可恢复Hb功能并减少红细胞前体损伤。大量临床数据显示18-21,HbF只需达到总Hb水平的30%,即可临床治愈β-地中海贫血。HbA的氧亲和力低于HbF,胎儿脱离子宫低氧环境后,HbA更适合肺与外界、血液与组织间的气体交换。高水平HbF不利于向组织释放氧,也会影响胎盘内的氧气交换,但尚无重激活HbF的不良反应报道10,仍需长期观察。

相较于基因添加,编辑更小片段、解除HbF沉默可能是更直接高效的策略。目前方案有破坏主要沉默因子BCL11A或ZBTB7A在HBG1/2启动子区的结合位点,破坏BCL11A红系增强子的结合位点,下调与BCL11A相互作用的GATA1、TAL1、KLF1、SOX6或NuRD等转录因子25。如已有LVV包装BCL11A shRNAmiR[28或ZNF410/BCL11A双靶点shRNAmiR[29的临床前研究。但干扰上述蛋白可能会导致其他生理过程失调。

3 基因治疗面临的挑战

3.1 载体安全性与有效性挑战

3.1.1 病毒载体

LVV在非分裂和分裂细胞中均能实现稳定整合,但需要考虑产生插入诱变和载体动员的风险。插入诱变可能引起的严重安全性问题:LMO2基因被γ反转录病毒的长末端重复序列(long terminal repeat,LTR)插入激活,导致受试者罹患白血病;1例β-地中海贫血患者转染LVV后出现HMGA2基因克隆扩增30;接受Skysona治疗的67例脑型肾上腺脑白质营养不良症患儿中,7例患上血液系统肿瘤,其中大多存在MECOM-EVI1克隆扩增及KRASWT1CDKN2A等体细胞突变31

由于转基因及病毒LTR被随机整合到转录活跃区域,外源性启动子/增强子会扰乱附近基因表达,引起克隆优势化、异常RNA剪接30等,感染野生型慢病毒后可能出现载体动员和重组,并产生复制型慢病毒。可通过染色质特定区域整合(改造LEDGF/p7532或phiC31整合酶33)、删除辅助蛋白、设计LVV假型化衣壳或cre酶介导自删除34等方法提高安全性。

3.1.2 非病毒载体

细胞穿膜肽、病毒样颗粒、脂质纳米颗粒(lipid nanoparticle,LNP)、纳米金颗粒等递送质粒DNA、mRNA或Cas9的策略已在其他疾病模型中实现。已报道LNP包装ABE-8e mRNA体外成功校正镰状细胞病(sickle cell disease,SCD)表型27,聚合物纳米粒子包装肽核酸原位修复HBB基因IVS2-654突变35。附加体载体(episomal vector,EV)不编码病毒蛋白,在核内以非整合的环状附加体形式存在,添加骨架/基质附着区元件和HBB基因复制起始区的EV已应用于临床前研究36。另一项研究37中,EV搭载人工转录因子Zif-VP64也可原位激活γ-珠蛋白转录。

3.2 基因编辑的脱靶效应风险

3.2.1 脱靶效应的产生

sgRNA与非目标位点错配,或Cas9识别相似的原间隔序列邻近基序,导致Cas9切割非目标位点即脱靶效应,可能引起意外的基因突变或功能改变。目前使用CRISPR/Cas9系统的产品,大多以非同源末端连接(non-homologous end-joining,NHEJ)修复Cas9引入的双链DNA断裂(double-strand break,DSB)。NHEJ脱靶率较高,若多个位点同时引入DSB则可能产生染色体重排、非整倍数变异、大片段丢失及染色体碎裂等严重后果38。DSB和Cas9激活p53介导的DNA损伤反应(DNA damage response,DDR),可能出现细胞周期停滞在G1期及p53缺陷细胞群的优势化克隆39。可采用全基因组测序、GUIDE-seq、Digenome-seq等技术评估脱靶效应40

3.2.2 降低脱靶效应的手段

应用高保真Cas9变体如Sp Cas9-HF1、HiFi Cas9等,可大幅降低脱靶率41;Cas9 nickase引入单链断裂而非DSB,工程化Cas9n可识别非NGG PAM,扩大编辑窗口40;Cas12a的gRNA更短,非靶标错配少,可引入具有黏性末端的DSB41;AsCas12f1核酸酶分子尺寸极小,更适配AAV载体42。缩短sgRNA、提高编辑位点开放程度、诱导同源重组修复(homology directed repair,HDR)等方式也可降低脱靶率。现阶段的临床前研究聚焦于电穿孔转导Cas9/sgRNA-RNP复合物及HDR模板,实现HBB片段原位替换或校正多位点突变的复杂缺陷。AAV6对HSC亲和力强,可装载全长HBB或核心部分(UTR和编码序列),而整合酶缺陷型LVV、腺病毒及单链寡核苷酸(single-stranded oligodeoxynucleotides,ssODN)等容量更大43,可替代AAV6。已实现ssODN或AAV6靶向启动子BetaPr或内含子IVS-I插入HBB序列44,LVV-SSO包装工程化U7 snRNA后长期表达45,Cas9/AAV6靶向血红蛋白α亚基(hemoglobin subunit α,HBA)启动子以全长HBB替换HBA146HBA247序列,Cas9/AAV6破坏BCL11A结合位点并引入诱导HbF表达的多个HPFH突变48。然而,GraphiteBio公司基于UltraHDR平台(HiFiCas9/AAV6)治疗SCD的Ⅰ/Ⅱ期临床试验(NCT04819841)中出现不良事件49,β-地中海贫血GPH102产品IND也被搁置。

碱基编辑器(base editor,BE)由dCas9或nCas9融合脱氨酶组成,有ABE(A:T to G:C)和CBE(C:G to T:A)2类,仅引入单碱基且无需DNA模板,不诱导DSB从而极大减少DDR,相较于HDR具有更高的编辑效率40。正序生物CS-101针对BCL11A结合位点进行C→T替换,已实现首例地中海贫血患者治愈。经脱氨酶改造的新一代BE,如hA3A-BE3、YEEBE4max41及ABE840等编辑窗口改变且精确度提高。引导编辑器(prime editor,PE)能够以pegRNA为模板替换所有组合的碱基41,比BE更灵活、更具特异性,已用于校正小鼠模型的IVS2-654突变,编辑效率达到14.29%50

3.3 结合载体递送的体内基因编辑

目前上市的基因修饰HSC产品,均采用体外修饰自体HSC后回输的方式。移植前患者需接受清髓性预处理,患者不良反应多、耐受性差,尚存在感染、继发肿瘤、长期并发症等风险。非清髓性方案毒性较小,如药物偶联c-Kit单抗Briquilimab可使HSC清除率>99%51;CD117/LNP递送促凋亡因子PUMA mRNA27、转染编码归巢受体CXCR4或生存因子BCL2 mRNA25等也可特异性清除HSC。相较之下,体内基因治疗的流程更为简化、微创安全,仅在外周血动员后输注载体,显著降低HSCT治疗费用。

AAV是当前应用最多的体内递送载体。已证实靶向神经系统、肝脏、视网膜、心脏等递送。但应用于血液系统仍面临一系列问题:① 仅4.7 kb的容量较小,无法同时装载Cas9和转基因序列52。② 持续表达Cas9导致频繁切割。③ 在HSC中长期存在会触发p53介导的DDR。已应用于地中海贫血的体内递送载体是识别CD46受体的辅助依赖性腺病毒(helper-dependent adenovirus,HDAd)5/35++、细胞穿膜肽/聚合物纳米粒子-肽核酸。WANG等53利用HDAd5/35++搭载SB100X转座酶和HBG基因,发现β-YAC小鼠中γ-珠蛋白水平达到10%~15%,并通过MGMT(P140K)系统进行体内筛选和扩增;搭载SpCas9的Bi-modular HDAd-combo效果更显著,γ-珠蛋白提升至30%54;HDAd5/35++递送PE5max,亦可显著改善SCD小鼠表型55;HDAd5/35++递送BE,靶向BCL11A增强子或HBG1/2启动子调控γ-珠蛋白,在小鼠二次移植模型中仍稳定表达56

3.4 造血干细胞的大规模扩增与干性维持技术

HSC大规模扩增与干性维持是基因治疗中的关键一环,HSC数量不足往往导致移植失败。HSC干性即自我更新和多系分化能力,骨髓niche调控HSC干性维持、衰老、恶性转化等命运,涉及细胞内/外调控因子、能量代谢和蛋白质稳态等尚未明确的复杂机制。HSC体外扩增目前面临诸多挑战:① 培养体系亟需优化。以往仅在血清白蛋白基础上添加干细胞因子、血小板生成素等支持HSC扩增的细胞因子组合,仅能维持短暂且效果微弱57。不同来源(骨髓、外周血、脐血、诱导多能性干细胞等)的HSC能否采用相同培养条件,扩增潜力有无差异有待确定。② HSC干性丢失及造血功能耗竭。HSC扩增可诱导蛋白质应激、活性氧积累及异常折叠蛋白增多。③ 细胞收获和冻存方式不当。体外长时间酶消化细胞,将损伤HSC表面标志物及细胞活力。④ 缺乏特异性表面标志物及完善的分选体系。离体后少数HSC不表达CD34。已报道CD201、整合素-A3可作为前瞻性标志物57

添加小分子化合物(嘧啶吲哚衍生物UM171、烟酰胺核苷等)、高分子聚乙烯醇或前列腺素E2等策略可实现HSC稳定扩增,已处于临床研究阶段57。利用仿生骨髓niche的Microniche58、骨髓类器官技术、3D培养结合两性离子水凝胶或HDAd5/35++包装tHMGA2基因的体内自扩增59等也完成临床前验证。此外,移植前体外测定HSC活性并排除异常整合,可减少对体内量化HSC的依赖;S/G2期HSC的HDR率大幅提升,而G0/G1期HSC以NHEJ修复为主;提高HSC移植数量及质量,能够缩短植入时间,降低感染风险;脐血干细胞移植受限于HSC数量不足,扩增HSC可实现单个供体为多个患者提供产品。

3.5 临床前研究及工艺开发困境

基因编辑系统和载体不断更新迭代,但向临床转化仍面临困境:① 临床前研究和工艺开发具有前沿性和探索性,应用新理论、新技术的产品研发周期长、生产难度大,差异化研发能力薄弱。② 无论选择何种生产工艺,均需解决剂量探索和长期安全性问题,并改进针对载体和表达产物、整合位点、脱靶效应等的检测方法。③ 缺乏灵长类动物模型,且存在种属差异,评估有效性和安全性仍依赖临床试验。④ 产品质量控制缺乏更准确灵敏的手段。目前常用细胞计数、细胞活力等检测,造血重建能力依赖体内植入,尚未做到移植前评价。⑤ 病毒载体的成本高且产能短缺,扩大给药范围使载体需求量随之增长,成本显著攀升。⑥ 专业技术人员不足,技术能力欠缺,亟需加强和培养。

基因治疗药物的技术、工艺、资金、人才壁垒高于传统制药。国内研究正处于转化过渡阶段,复杂的技术机制、高门槛的工艺开发、严苛的监管要求、有限的产业化经验等限制成果转化。完善相关政策、促进广泛合作、加快新技术应用和人才培养,才能在基础研究和临床转化方面取得突破。

3.6 临床试验的相关问题

3.6.1 现阶段临床研究面临的挑战

基因修饰干细胞产品存在成瘤性风险、在体持久性和免疫原性等挑战,因此除常规的临床安全性、药代动力学、药效学、剂量探索和确证性临床试验外,还需依据产品特性制定更加全面的评估标准。根据患者年龄、基因型、表型严重程度、输血需求等设定受试者纳入标准,并确定单臂试验规模,考量是否纳入青少年。通过设置起始剂量及递增剂量组,评估自体回输后细胞在体内活性、增殖/分化能力,并监测其免疫原性;以总Hb水平、HbF占比、骨髓造血重建能力和植入时间、VCN或等位基因编辑频率、干细胞持久性等评价有效性;主要疗效终点包括维持TI(定义为>12个月无需输血、平均总Hb≥90 g/L)60、祛铁治疗频率降低,以及各器官功能与铁负荷变化。评估不良事件时,除关注常规监测发热、感染、GVHD等移植前后相关并发症外,重点关注基因编辑特有的安全性问题,如插入诱变、脱靶效应和病毒载体复制能力等。根据国家药品监督管理局药品审评中心规定,具有基因组整合活性的载体或基因编辑产品,需进行不短于15年长期随访,以确保持续监测药物有效性和安全性。

3.6.2 监管审批流程的复杂性

基因治疗药物属于生物制剂药品,涉及科技伦理敏感领域,适用特定的法律法规及监管要求。不同国家对此类产品的监管审批流程存在差异。美国以法律、法规、管理制度与指南的三层框架体系,实施FDA主管、下设生物制品评估和研究中心的分级监管制度。欧盟采用法律、法规、法令和指南组成的四层体系,由EMA统一评估、批准上市,定价和医保给付由各成员国自行决定。中国内地实行“双重监管”体系,由国家卫生健康委员会监管临床研究备案和批准后的临床应用环节,由药监部门负责IND审批和新药上市许可申请。

3.7 商业化与支付体系的考量

基因治疗药物的适应证目前集中在遗传罕见病领域,其研发及生产成本高、市场较小,应合理布局平台的通用性及拓展性,摊平整体研发成本,提升物料供应、生产流程等方面的标准化及规模化水平,实现设备、试剂、耗材等国产化替代,从多方面入手降低定价、加快商业化进程。此外,逐步推进基因治疗向常见病、多发病领域拓展,亦是促进其商业化成功的有力举措。近年来,我国政府推动干细胞医疗行业发展,鼓励企业、医院、科研机构和高校之间紧密合作,进一步促进成果转化及新药研发。

可负担性应成为地中海贫血治疗的关键考量要素之一,产前检测、红细胞输注、铁螯合剂和allo-HSCT已纳入保险范围。应由政府主导基因治疗的支付方式设计,建立多元化医保支付体系,可参考以下建议:① “医保+多方共担”支付模式。政府设定一次性医保封顶费用,超过部分由患者、社会团体组织、商保等多方共同承担。② 基于实际疗效的分期支付模式。医保承担前几期费用,超出部分由多方分担。若无效或耐药则不再支付后续费用或返还部分费用。③ 积极推广出生前商业保险,以多数群体小额保费撬动未来少数群体的获益保障。此类商保已在我国两广地区实行。④ 增设慈善基金、社会公益活动等,推动政策和规则制定,实现更大范围的患者权益保障与治疗可及。

作者贡献声明

王大威、刘艳和高欣洁负责综述设计,高欣洁负责文献检索和综述写作,王大威和刘艳负责指导写作并参与论文修改。所有作者均阅读并同意了最终稿件的提交。

AUTHOR's CONTRIBUTIONS

The review was designed by WANG Dawei, LIU Yan and GAO Xinjie. The manuscript was drafted by GAO Xinjie. WANG Dawei and LIU Yan participated in writing guidance and revision. All authors have read the last version of paper and consented to submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

KATTAMIS A, KWIATKOWSKI J L, AYDINOK Y. Thalassaemia[J]. Lancet, 2022, 399(10343): 2310-2324.

[本文引用: 2]

中华医学会血液学分会红细胞疾病贫血学组. 中国输血依赖型β地中海贫血诊断与治疗指南(2022年版)[J]. 中华血液学杂志, 2022, 43(11): 889-896.

[本文引用: 4]

Red Blood Cell Diseases (Anemia) Group, Chinese Society of Hematology, Chinese Medical Association. Chinese guideline for diagnosis and treatment of transfusion dependent β-thalassemia (2022)[J]. Chinese Journal of Hematology, 2022, 43(11): 889-896.

[本文引用: 4]

LAL A, LOCATELLI F, KWIATKOWSKI J L, et al. Northstar-3: interim results from a phase 3 study evaluating lentiglobin gene therapy in patients with transfusion-dependent β-thalassemia and either a β0 or IVS-I-110 mutation at both alleles of the HBB gene[J]. Blood, 2019, 134: 815.

[本文引用: 3]

LOCATELLI F, LANG P, WALL D, et al. Exagamglogene autotemcel for transfusion-dependent β- thalassemia[J]. N Engl J Med, 2024, 390(18): 1663-1676.

[本文引用: 4]

PIEL F B, WEATHERALL D J. The α-thalassemias[J]. N Engl J Med, 2014, 371(20): 1908-1916.

[本文引用: 1]

KATTAMIS A, FORNI G L, AYDINOK Y, et al. Changing patterns in the epidemiology of β-thalassemia[J]. Eur J Haematol, 2020, 105(6): 692-703.

[本文引用: 1]

WANG W D, HU F, ZHOU D H, et al. Thalassaemia in China[J]. Blood Rev, 2023, 60: 101074.

[本文引用: 2]

中华医学会医学遗传学分会遗传病临床实践指南撰写组. β-地中海贫血的临床实践指南[J]. 中华医学遗传学杂志, 2020, 37(3): 243-251.

[本文引用: 1]

Writing Group for Practice Guidelines for Diagnosis and Treatment of Genetic Diseases, Medical Genetics Branch of Chinese Medical Associatio. Clinical practice guidelines for β-thalassemia [J]. Chinese Journal of Medical Genetics, 2020, 37(3): 243-251.

[本文引用: 1]

ZHEN X M, MING J, ZHANG R Q, et al. Economic burden of adult patients with β-thalassaemia major in mainland China[J]. Orphanet J Rare Dis, 2023, 18(1): 252.

[本文引用: 1]

陈辉, 贾玉艳, 黄粤, 等. 地中海贫血基因治疗进展和现状[J]. 广西医科大学学报, 2024, 41(1): 1-10.

[本文引用: 2]

CHEN H, JIA Y Y, HUANG Y, et al. Progress and current status of gene therapy for thalassemia[J]. Journal of Guangxi Medical University, 2024, 41(1): 1-10.

[本文引用: 2]

MARKTEL S, SCARAMUZZA S, CICALESE M P, et al. Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent β-thalassemia[J]. Nat Med, 2019, 25(2): 234-241.

[本文引用: 2]

THOMPSON A A, WALTERS M C, KWIATKOWSKI J, et al. Gene therapy in patients with transfusion-dependent β-thalassemia[J]. N Engl J Med, 2018, 378(16): 1479-1493.

[本文引用: 1]

LOCATELLI F, THOMPSON A A, KWIATKOWSKI J L, et al. Betibeglogene autotemcel gene therapy for non-β00 genotype β-thalassemia[J]. N Engl J Med, 2022, 386(5): 415-427.

[本文引用: 1]

HAN N. Interim results of gene therapy using optimized LentiHBBT87Q vector in five Chinese patients with transfusion dependent β-thalassemia[C]//EHA2024 Hybrid Congress. Madrid, Spain: EHA Library, 2024: 1517.

[本文引用: 1]

LI S Q, LING S K, WANG D W, et al. Modified lentiviral globin gene therapy for pediatric β00 transfusion-dependent β-thalassemia: a single-center, single-arm pilot trial[J]. Cell Stem Cell, 2024, 31(7): 961-973.e8.

[本文引用: 1]

HUANG J Q, ZHANG Y M, LIANG L, et al. Gene therapy of transfusion-dependent β-thalassemia patients with quick engraftment of reinfused hematopoietic stem cells: an investigator-initiated trial of KL003[J]. Blood, 2023, 142: 4998.

[本文引用: 1]

WALTERS M C, SMITH A R, SCHILLER G J, et al. Updated results of a phase 1/2 clinical study of zinc finger nuclease-mediated editing of BCL11A in autologous hematopoietic stem cells for transfusion-dependent β thalassemia[J]. Blood, 2021, 138(Supplement 1): 3974.

[本文引用: 1]

FRANGOUL H, HANNA R, WALTERS M C, et al. Reni-cel, the first AsCas12a gene-edited cell therapy, shows promising preliminary results in key clinical outcomes in transfusion-dependent β- thalassemia patients treated in the EdiThaltrial[C]//EHA2024 Hybrid Congress. Madrid, Spain: EHA Library, 2024: 1476.

[本文引用: 2]

SHI J, FANG R G, GAO Z, et al. Preliminary safety and efficacy results of EDI001: an investigator initiated trial on CRISPR/Cas9-modified autologous CD34+ hematopoietic stem and progenitor cells for patients with transfusion dependent β-thalassemia[J]. Blood, 2022, 140(Supplement 1): 10652-10653.

[本文引用: 1]

ZHENG B, LIU R R, ZHANG X H, et al. Efficacy and safety of brl-101, CRISPR-Cas9-mediated gene editing of the BCL11A enhancer in transfusion-dependent β-thalassemia[J]. Blood, 2023, 142: 4995.

[本文引用: 1]

LIU R R, WANG L, XU H, et al. Safety and efficacy of RM-001 (autologous HBG1/2 promoter-modified CD34+ hematopoietic stem and progenitor cells) in patients with transfusion-dependent β-thalassemia[J]. Blood, 2023, 142: 4994.

[本文引用: 2]

KUSCU C, ARSLAN S, SINGH R, et al. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease[J]. Nat Biotechnol, 2014, 32(7): 677-683.

[本文引用: 1]

MORGAN R A, UNTI M J, ALESHE B, et al. Improved titer and gene transfer by lentiviral vectors using novel, small β-globin locus control region elements[J]. Mol Ther, 2020, 28(1): 328-340.

[本文引用: 1]

GIOMMETTI A, PAPANIKOLAOU E. Advancements in hematopoietic stem cell gene therapy: a journey of progress for viral transduction[J]. Cells, 2024, 13(12): 1039.

[本文引用: 1]

SEGURA E E R, AYOUB P G, HART K L, et al. Gene therapy for β-hemoglobinopathies: from discovery to clinical trials[J]. Viruses, 2023, 15(3): 713.

[本文引用: 3]

GAMBARI R. Alternative options for DNA-based experimental therapy of β-thalassemia[J]. Expert Opin Biol Ther, 2012, 12(4): 443-462.

[本文引用: 1]

BREDA L, PAPP T E, TRIEBWASSER M P, et al. In vivo hematopoietic stem cell modification by mRNA delivery[J]. Science, 2023, 381(6656): 436-443.

[本文引用: 3]

ESRICK E B, LEHMANN L E, BIFFI A, et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease[J]. N Engl J Med, 2021, 384(3): 205-215.

[本文引用: 1]

LIU B Y, BRENDEL C, VINJAMUR D S, et al. Development of a double shmiR lentivirus effectively targeting both BCL11A and ZNF410 for enhanced induction of fetal hemoglobin to treat β-hemoglobinopathies[J]. Mol Ther, 2022, 30(8): 2693-2708.

[本文引用: 1]

CAVAZZANA-CALVO M, PAYEN E, NEGRE O, et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia[J]. Nature, 2010, 467(7313): 318-322.

[本文引用: 2]

DUNCAN C N, BLEDSOE J R, GRZYWACZ B, et al. Hematologic cancer after gene therapy for cerebral adrenoleukodystrophy[J]. N Engl J Med, 2024, 391(14): 1287-1301.

[本文引用: 1]

POESCHLA E M. Integrase, LEDGF/p75 and HIV replication[J]. Cell Mol Life Sci, 2008, 65(9): 1403-1424.

[本文引用: 1]

DORMIANI K, MIR MOHAMMAD SADEGHI H, SADEGHI-ALIABADI H, et al. Long-term and efficient expression of human β-globin gene in a hematopoietic cell line using a new site-specific integrating non-viral system[J]. Gene Ther, 2015, 22(8): 663-674.

[本文引用: 1]

PFEIFER A, BRANDON E P, KOOTSTRA N, et al. Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo[J]. Proc Natl Acad Sci USA, 2001, 98(20): 11450-11455.

[本文引用: 1]

BAHAL R, ALI MCNEER N, QUIJANO E, et al. In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery[J]. Nat Commun, 2016, 7: 13304.

[本文引用: 1]

LAZARIS V M, SIMANTIRAKIS E, STAVROU E F, et al. Non-viral episomal vector mediates efficient gene transfer of the β-globin gene into K562 and human haematopoietic progenitor cells[J]. Genes (Basel), 2023, 14(9): 1774.

[本文引用: 1]

STAVROU E F, SIMANTIRAKIS E, VERRAS M, et al. Episomal vectors based on S/MAR and the β-globin replicator, encoding a synthetic transcriptional activator, mediate efficient γ-globin activation in haematopoietic cells[J]. Sci Rep, 2019, 9(1): 19765.

[本文引用: 1]

REES H A, MINELLA A C, BURNETT C A, et al. CRISPR-derived genome editing therapies: progress from bench to bedside[J]. Mol Ther, 2021, 29(11): 3125-3139.

[本文引用: 1]

ENACHE O M, RENDO V, ABDUSAMAD M, et al. Cas9 activates the p53 pathway and selects for p53-inactivating mutations[J]. Nat Genet, 2020, 52(7): 662-668.

[本文引用: 1]

ANTONIOU P, MICCIO A, BRUSSON M. Base and prime editing technologies for blood disorders[J]. Front Genome Ed, 2021, 3: 618406.

[本文引用: 4]

HRYHOROWICZ M, LIPIŃSKI D, ZEYLAND J. Evolution of CRISPR/cas systems for precise genome editing[J]. Int J Mol Sci, 2023, 24(18): 14233.

[本文引用: 4]

WU Z W, ZHANG Y F, YU H P, et al. Programmed genome editing by a miniature CRISPR-Cas12f nuclease[J]. Nat Chem Biol, 2021, 17(11): 1132-1138.

[本文引用: 1]

FERRARI S, JACOB A, CESANA D, et al. Choice of template delivery mitigates the genotoxic risk and adverse impact of editing in human hematopoietic stem cells[J]. Cell Stem Cell, 2022, 29(10): 1428-1444.e9.

[本文引用: 1]

LAMSFUS-CALLE A, DANIEL-MORENO A, UREÑA-BAILÉN G, et al. Universal gene correction approaches for β-hemoglobinopathies using CRISPR-Cas9 and adeno-associated virus serotype 6 donor templates[J]. CRISPR J, 2021, 4(2): 207-222.

[本文引用: 1]

NUALKAEW T, JEARAWIRIYAPAISARN N, HONGENG S, et al. Restoration of correct βIVS2-654-globin mRNA splicing and HbA production by engineered U7 snRNA in β-thalassaemia/HbE erythroid cells[J]. Sci Rep, 2019, 9(1): 7672.

[本文引用: 1]

KYLE CROMER M, CAMARENA J, MARTIN R M, et al. Gene replacement of α-globin with β-globin restores hemoglobin balance in β-thalassemia-derived hematopoietic stem and progenitor cells[J]. Nat Med, 2021, 27(4): 677-687.

[本文引用: 1]

PAVANI G, FABIANO A, LAURENT M, et al. Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells[J]. Blood Adv, 2021, 5(5): 1137-1153.

[本文引用: 1]

LU D, XU Z L, PENG Z Y, et al. Induction of fetal hemoglobin by introducing natural hereditary persistence of fetal hemoglobin mutations in the γ-globin gene promoters for genome editing therapies for β-thalassemia[J]. Front Genet, 2022, 13: 881937.

[本文引用: 1]

SHYR D C, LOWSKY R, MILLER W, et al. One year follow-up on the first patient treated with nula-cel: an autologous CRISPR/Cas9 gene corrected CD34+ cell product to treat sickle cell disease[J]. Blood, 2023, 142: 5000.

[本文引用: 1]

ZHANG H K, SUN R L, FEI J, et al. Correction of β-thalassemia IVS-II-654 mutation in a mouse model using prime editing[J]. Int J Mol Sci, 2022, 23(11): 5948.

[本文引用: 1]

UCHIDA N, TISDALE J F, DONAHUE R E, et al. A single dose of CD117 antibody drug conjugate enables hematopoietic stem cell based gene therapy in nonhuman Primates[J]. Biol Blood Marrow Transplant, 2020, 26(3): S6.

[本文引用: 1]

NGUYEN G N, EVERETT J K, KAFLE S, et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells[J]. Nat Biotechnol, 2021, 39(1): 47-55.

[本文引用: 1]

WANG H J, GEORGAKOPOULOU A, PSATHA N, et al. In vivo hematopoietic stem cell gene therapy ameliorates murine thalassemia intermedia[J]. J Clin Invest, 2019, 129(2): 598-615.

[本文引用: 1]

LI C, WANG H J, GEORGAKOPOULOU A, et al. In vivo HSC gene therapy using a bi-modular HDAd5/35++ vector cures sickle cell disease in a mouse model[J]. Mol Ther, 2021, 29(2): 822-837.

[本文引用: 1]

PASCHOUDI K, YANNAKI E, PSATHA N. Precision editing as a therapeutic approach for β-hemoglobinopathies[J]. Int J Mol Sci, 2023, 24(11): 9527.

[本文引用: 1]

LI C, GEORGAKOPOULOU A, MISHRA A, et al. In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal γ-globin in β-YAC mice[J]. Blood Adv, 2021, 5(4): 1122-1135.

[本文引用: 1]

MEAKER G A, WILKINSON A C. Ex vivo hematopoietic stem cell expansion technologies: recent progress, applications, and open questions[J]. Exp Hematol, 2024, 130: 104136.

[本文引用: 3]

LI Y H, HE M, ZHANG W S, et al. Expansion of human megakaryocyte-biased hematopoietic stem cells by biomimetic Microniche[J]. Nat Commun, 2023, 14(1): 2207.

[本文引用: 1]

WANG H J, GEORGAKOPOULOU A, NIZAMIS E, et al. Auto-expansion of in vivo HDAd-transduced hematopoietic stem cells by constitutive expression of tHMGA2[J]. Mol Ther Methods Clin Dev, 2024, 32(3): 101319.

[本文引用: 1]

CORBACIOGLU S, FRANGOUL H, LOCATELLI F, et al. Defining curative endpoints for transfusion-dependent β-thalassemia in the era of gene therapy and gene editing[J]. Am J Hematol, 2024, 99(3): 422-429.

[本文引用: 1]

/