Microglia are the resident immune cells in the central nervous system (CNS), and play a dual role in maintaining brain homeostasis and mediating neuroprotection. Under normal conditions, microglia maintain brain homeostasis by monitoring environmental changes. When nerve damage or certain pathological stimuli occur, microglia are rapidly activated and initiate a series of complex immune responses to induce neuroinflammation. This proper activation of microglia can protect the brain by inhibiting or clearing various pathogens, but excessive neuroinflammation can lead to neuronal damage and even death. This imbalance of inflammatory response is one of the core features of pathological development of many CNS inflammatory diseases, such as Alzheimer′s disease, Parkinson′s disease, sepsis-associated encephalopathy, and ischemic strokes. In recent years, with the rapid development of frontier biotechnology such as single-cell sequencing, proteinomics and gene editing, important progress has been made in understanding the molecular mechanism by which microglia participate in CNS inflammatory diseases, especially in the activation of inflammatory corpuscles, epigenetic modifications, and metabolic reprogramming. However, due to the heterogeneity and duality of microglia under different pathological conditions, therapeutic methods targeting microglia have not yet been widely used in clinical practice. In summary, this article takes microglia as the starting point and introduces the molecular mechanisms of their involvement in the occurrence and development of CNS inflammatory diseases and its targeted regulatory treatment strategy, aiming to provide theoretical reference for the subsequent precise regulation of microglia function and the development of more targeted therapeutic drugs.
Keywords:microglia
;
neuroinflammation
;
inflammatory diseases of central nervous system
;
pathogenic mechanism
;
targeted therapy
YU Kai, SHUAI Zhewei, HUANG Hongjun, LUO Yan. Research progress on the role and mechanisms of microglia in inflammatory diseases of central nervous system. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2025, 45(5): 630-638 doi:10.3969/j.issn.1674-8115.2025.05.012
除了α-syn与小胶质细胞的直接相互作用外,研究还揭示了多种对小胶质细胞功能有重要影响的信号通路,在PD的神经炎症和病理进展中同样具有关键作用。研究[29]发现,在PD小鼠模型中,小胶质细胞中的cGAS激活抗病毒炎症信号通路,导致神经炎症加剧和多巴胺能神经元损伤;而cGas基因敲除的模型小鼠神经炎症和神经毒性显著减轻,这提示cGAS可通过调控小胶质细胞的炎症反应影响PD的进展。长链酰基辅酶A合成酶家族成员4(acyl-CoA synthetase long-chain family member 4,ACSL4)在LPS的诱导下表达水平增加,并可通过调控退化样家族成员4(vestigial-like family member 4,VGLL4)的表达来增强炎症信号,而使用腺相关病毒敲低Acsl4基因能够减轻小胶质细胞的炎症反应和PD模型小鼠的神经元损伤[30]。脑与肌肉ARNT样蛋白1(brain and muscle ARNT-like 1,BMAL1)作为一种调节昼夜节律的核心蛋白,它的缺失会加剧PD小鼠模型中小胶质细胞激活和神经炎症反应,从而导致多巴胺能神经元的损伤加重,表现为运动功能障碍和多巴胺水平下降;进一步发现,BMAL1能够通过抑制NF-κB信号通路活性,降低小胶质细胞炎症因子的释放水平,从而保护多巴胺能神经元的存活[31]。因此,小胶质细胞能够通过其吞噬功能清除损伤的突触和积累的α-syn,发挥一定的保护作用;另一方面,过度激活的小胶质细胞释放的炎症因子会导致神经元的损伤和死亡,加剧PD的进展。
动物水平的研究进一步表明小胶质细胞功能变化对SAE的病理进展具有推动作用。在盲肠结扎穿刺(cecal ligation and puncture,CLP)诱导的小鼠SAE模型中,小胶质细胞过度激活,神经元焦亡,小鼠出现认知功能障碍[39]。C-X-C模体趋化因子受体5(C-X-C motif chemokine receptor 5,CXCR5)在炎症、感染和免疫反应中起着重要作用。通过下调CXCR5,可以抑制p38丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)/NF-κB/信号转导与转录激活因子3(signal transducer and activator of transcription 3,STAT3)信号通路的活化,减少小胶质细胞的促炎症极化,促进其向M2抗炎症表型转化[41]。研究[41]发现,Cxcr5基因敲除小鼠中,CLP诱导的海马小胶质细胞极化减弱,小鼠认知功能改善。在SAE的早期阶段,小胶质细胞介导的神经炎症对机体可能有一定的保护作用,但随着病情的恶化,小胶质细胞释放的炎症因子和神经毒性物质(如一氧化氮、ROS等)对神经元产生直接的毒性作用,可能导致神经元死亡,进而加剧SAE的发生发展。
当前研究已逐步阐明IS病理进程中小胶质细胞介导的炎症反应分子机制。三结构域蛋白45(tripartite motif-containing 45,TRIM45)在脑缺血诱导的小鼠脑组织中表达显著上调,它通过激活NF-κB信号通路,促进小胶质细胞释放促炎症细胞因子和趋化因子;通过使用腺相关病毒敲低小鼠大脑皮层、海马CA1区小胶质细胞中的Trim45,发现Trim45基因敲低能够减少小鼠脑梗死面积,降低神经功能损伤并改善认知功能[44]。沉默信息调节因子2家族成员5(silent information regulator 2 family member 5,SIRT5)是蛋白质去乙酰化酶sirtuin家族的一员,参与调控AD、PD等多种脑部疾病。研究表明,在原代小胶质细胞中,SIRT5通过去除膜联蛋白A1(annexin A1,ANXA1)的琥珀酰化修饰,激活小胶质细胞并释放促炎症细胞因子,从而加剧神经炎症和脑损伤[45]。同样使用腺相关病毒敲低小鼠大脑皮层、海马CA1区中小胶质细胞的Sirt5,随后进行大脑中动脉阻塞(middle cerebral artery occlusion,MCAO)造模,发现Sirt5基因敲低小鼠有更小的脑梗死体积、更低的神经功能缺陷评分以及更好的认知功能[45]。小胶质细胞在IS后迅速激活,并通过分泌促炎症细胞因子参与神经炎症反应。虽然短期的神经炎症反应在一定程度上有助于清除受损的细胞并启动修复过程,但长期或过度的炎症反应会加剧神经损伤,影响脑功能的恢复。
除以上化学药物治疗手段外,部分物理疗法作为一种更安全的治疗方法已经被广泛研究并在临床实践中展现出积极潜力。重复经颅磁刺激(repetitive transcranial magnetic stimulation,rTMS)被报道具有抗炎症和调节小胶质细胞功能的作用[59]。IS后rTMS治疗可有效抑制缺血/再灌注诱导的M1型小胶质细胞,促使其从M1表型向M2表型转变,显著减弱大鼠脑卒中后的行为缺陷和梗死体积[60]。而经颅直流电刺激(transcranial direct current stimulation,tDCS)对局灶性脑缺血小鼠的神经发生和神经炎症过程同样具有积极的调节作用。tDCS可刺激神经发生,并抑制小胶质细胞向M1表型极化,促进小胶质细胞向神经保护性M2表型极化[61]。尽管以上的研究仍处于动物实验阶段,但这些方法因其安全性、可操作性和较少不良反应,展现出对疾病治疗的巨大潜力,值得进一步深入探索。
The review was designed by YU Kai and HUANG Hongjun. The literature search and review writing were conducted by YU Kai. SHUAI Zhewei participated in the writing. The revision of manuscript was reviewed and supervised by HUANG Hongjun and LUO Yan. All authors have read the final version of paper and consented to its submission.
利益冲突声明
所有作者声明不存在利益冲突。
COMPETING INTERESTS
All authors declare no relevant conflict of interests.
SUBHRAMANYAM C S, WANG C, HU Q D, et al. Microglia-mediated neuroinflammation in neurodegenerative diseases[J]. Semin Cell Dev Biol, 2019, 94: 112-120.
XIN Y W, TIAN M, DENG S X, et al. The key drivers of brain injury by systemic inflammatory responses after sepsis: microglia and neuroinflammation[J]. Mol Neurobiol, 2023, 60(3): 1369-1390.
CAFFAREL M M, BRAZA M S. Microglia and metastases to the central nervous system: victim, ravager, or something else?[J]. J Exp Clin Cancer Res, 2022, 41(1): 327.
GINHOUX F, GRETER M, LEBOEUF M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages[J]. Science, 2010, 330(6005): 841-845.
ELMORE M R P, NAJAFI A R, KOIKE M A, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain[J]. Neuron, 2014, 82(2): 380-397.
PAGANI F, PAOLICELLI R C, MURANA E, et al. Defective microglial development in the hippocampus of Cx3cr1 deficient mice[J]. Front Cell Neurosci, 2015, 9: 111.
VIDAL-ITRIAGO A, RADFORD R A W, ARAMIDEH J A, et al. Microglia morphophysiological diversity and its implications for the CNS[J]. Front Immunol, 2022, 13: 997786.
WANG W B, LI Y Z, MA F L, et al. Microglial repopulation reverses cognitive and synaptic deficits in an Alzheimer′s disease model by restoring BDNF signaling[J]. Brain Behav Immun, 2023, 113: 275-288.
LONG Y, LI X Q, DENG J, et al. Modulating the polarization phenotype of microglia: a valuable strategy for central nervous system diseases[J]. Ageing Res Rev, 2024, 93: 102160.
BLITZ S E, KAPPEL A D, GESSLER F A, et al. Tumor-associated macrophages/microglia in glioblastoma oncolytic virotherapy: a double-edged sword[J]. Int J Mol Sci, 2022, 23(3): 1808.
TWAROWSKI B, HERBET M. Inflammatory processes in Alzheimer′s disease-pathomechanism, diagnosis and treatment: a review[J]. Int J Mol Sci, 2023, 24(7): 6518.
GAO C, JIANG J W, TAN Y Y, et al. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 359.
MALKO P, SYED MORTADZA S A, MCWILLIAM J, et al. TRPM2 channel in microglia as a new player in neuroinflammation associated with a spectrum of central nervous system pathologies[J]. Front Pharmacol, 2019, 10: 239.
DECOUT A, KATZ J D, VENKATRAMAN S, et al. The cGAS-STING pathway as a therapeutic target in inflammatory diseases[J]. Nat Rev Immunol, 2021, 21(9): 548-569.
JIN M H, SHIWAKU H, TANAKA H, et al. Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation[J]. Nat Commun, 2021, 12(1): 6565.
BLEVINS H M, XU Y M, BIBY S, et al. The NLRP3 inflammasome pathway: a review of mechanisms and inhibitors for the treatment of inflammatory diseases[J]. Front Aging Neurosci, 2022, 14: 879021.
LIU S Y, QIAO H W, SONG T B, et al. Brain microglia activation and peripheral adaptive immunity in Parkinson′s disease: a multimodal PET study[J]. J Neuroinflammation, 2022, 19(1): 209.
CALABRESI P, MECHELLI A, NATALE G, et al. Alpha-synuclein in Parkinson′s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction[J]. Cell Death Dis, 2023, 14(3): 176.
MA C M, LIU Y, LI S, et al. Microglial cGAS drives neuroinflammation in the MPTP mouse models of Parkinson′s disease[J]. CNS Neurosci Ther, 2023, 29(7): 2018-2035.
LIU W W, WEI S Z, HUANG G D, et al. BMAL1 regulation of microglia-mediated neuroinflammation in MPTP-induced Parkinson′s disease mouse model[J]. FASEB J, 2020, 34(5): 6570-6581.
ZHANG Y H, HOU B H, LIANG P Y, et al. TRPV1 channel mediates NLRP3 inflammasome-dependent neuroinflammation in microglia[J]. Cell Death Dis, 2021, 12(12): 1159.
SINGER M, DEUTSCHMAN C S, SEYMOUR C W, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8): 801-810.
SONNEVILLE R, DE MONTMOLLIN E, POUJADE J, et al. Potentially modifiable factors contributing to sepsis-associated encephalopathy[J]. Intensive Care Med, 2017, 43(8): 1075-1084.
YAN X Q, YANG K Y, XIAO Q, et al. Central role of microglia in sepsis-associated encephalopathy: from mechanism to therapy[J]. Front Immunol, 2022, 13: 929316.
SHEN Y N, ZHANG Y, DU J Y, et al. CXCR5 down-regulation alleviates cognitive dysfunction in a mouse model of sepsis-associated encephalopathy: potential role of microglial autophagy and the p38MAPK/NF-κB/STAT3 signaling pathway[J]. J Neuroinflammation, 2021,
XIA Q, ZHAN G F, MAO M, et al. TRIM45 causes neuronal damage by aggravating microglia-mediated neuroinflammation upon cerebral ischemia and reperfusion injury[J]. Exp Mol Med, 2022, 54(2): 180-193.
XIA Q, GAO S, HAN T R, et al. Sirtuin 5 aggravates microglia-induced neuroinflammation following ischaemic stroke by modulating the desuccinylation of Annexin-A1[J]. J Neuroinflammation, 2022, 19(1): 301.
PRAMANIK S, DEVI M H, CHAKRABARTY S, et al. Microglia signaling in health and disease: implications in sex-specific brain development and plasticity[J]. Neurosci Biobehav Rev, 2024, 165: 105834.
SUN Z Q, ZHANG X, SO K F, et al. Targeting microglia in Alzheimer′s disease: pathogenesis and potential therapeutic strategies[J]. Biomolecules, 2024, 14(7): 833.
MCGARRY A, ROSANBALM S, LEINONEN M, et al. Safety, tolerability, and efficacy of NLY01 in early untreated Parkinson′s disease: a randomised, double-blind, placebo-controlled trial[J]. Lancet Neurol, 2024, 23(1): 37-45.
LONG H, SIMMONS A, MAYORGA A, et al. Preclinical and first-in-human evaluation of AL002, a novel TREM2 agonistic antibody for Alzheimer′s disease[J]. Alzheimers Res Ther, 2024, 16(1): 235.
ZHANG X L, SUBBANNA S, WILLIAMS C R O, et al. Anti-inflammatory action of BT75, a novel RARα agonist, in cultured microglia and in an experimental mouse model of Alzheimer′s disease[J]. Neurochem Res, 2023, 48(6): 1958-1970.
MA Q. Pharmacological inhibition of the NLRP3 inflammasome: structure, molecular activation, and inhibitor-NLRP3 interaction[J]. Pharmacol Rev, 2023, 75(3): 487-520.
LONNEMANN N, HOSSEINI S, MARCHETTI C, et al. The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer′s disease[J]. Proc Natl Acad Sci USA, 2020, 117(50): 32145-32154.
GORDON R, ALBORNOZ E A, CHRISTIE D C, et al. Inflammasome inhibition prevents α- synuclein pathology and dopaminergic neurodegeneration in mice[J]. Sci Transl Med, 2018, 10(465): eaah4066.
MCGINLEY M P, COHEN J A. Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions[J]. Lancet, 2021, 398(10306): 1184-1194.
QIN C, FAN W H, LIU Q, et al. Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway[J]. Stroke, 2017, 48(12): 3336-3346.
LUO J, FENG Y, LI M Y, et al. Repetitive transcranial magnetic stimulation improves neurological function and promotes the anti-inflammatory polarization of microglia in ischemic rats[J]. Front Cell Neurosci, 2022, 16: 878345.
ZONG X M, DONG Y, LI Y Y, et al. Beneficial effects of theta-burst transcranial magnetic stimulation on stroke injury via improving neuronal microenvironment and mitochondrial integrity[J]. Transl Stroke Res, 2020, 11(3): 450-467.
WALTER H L, PIKHOVYCH A, ENDEPOLS H, et al. Transcranial-direct-current-stimulation accelerates motor recovery after cortical infarction in mice: the interplay of structural cellular responses and functional recovery[J]. Neurorehabil Neural Repair, 2022, 36(10/11): 701-714.
... 除了α-syn与小胶质细胞的直接相互作用外,研究还揭示了多种对小胶质细胞功能有重要影响的信号通路,在PD的神经炎症和病理进展中同样具有关键作用.研究[29]发现,在PD小鼠模型中,小胶质细胞中的cGAS激活抗病毒炎症信号通路,导致神经炎症加剧和多巴胺能神经元损伤;而cGas基因敲除的模型小鼠神经炎症和神经毒性显著减轻,这提示cGAS可通过调控小胶质细胞的炎症反应影响PD的进展.长链酰基辅酶A合成酶家族成员4(acyl-CoA synthetase long-chain family member 4,ACSL4)在LPS的诱导下表达水平增加,并可通过调控退化样家族成员4(vestigial-like family member 4,VGLL4)的表达来增强炎症信号,而使用腺相关病毒敲低Acsl4基因能够减轻小胶质细胞的炎症反应和PD模型小鼠的神经元损伤[30].脑与肌肉ARNT样蛋白1(brain and muscle ARNT-like 1,BMAL1)作为一种调节昼夜节律的核心蛋白,它的缺失会加剧PD小鼠模型中小胶质细胞激活和神经炎症反应,从而导致多巴胺能神经元的损伤加重,表现为运动功能障碍和多巴胺水平下降;进一步发现,BMAL1能够通过抑制NF-κB信号通路活性,降低小胶质细胞炎症因子的释放水平,从而保护多巴胺能神经元的存活[31].因此,小胶质细胞能够通过其吞噬功能清除损伤的突触和积累的α-syn,发挥一定的保护作用;另一方面,过度激活的小胶质细胞释放的炎症因子会导致神经元的损伤和死亡,加剧PD的进展. ...
1
... 除了α-syn与小胶质细胞的直接相互作用外,研究还揭示了多种对小胶质细胞功能有重要影响的信号通路,在PD的神经炎症和病理进展中同样具有关键作用.研究[29]发现,在PD小鼠模型中,小胶质细胞中的cGAS激活抗病毒炎症信号通路,导致神经炎症加剧和多巴胺能神经元损伤;而cGas基因敲除的模型小鼠神经炎症和神经毒性显著减轻,这提示cGAS可通过调控小胶质细胞的炎症反应影响PD的进展.长链酰基辅酶A合成酶家族成员4(acyl-CoA synthetase long-chain family member 4,ACSL4)在LPS的诱导下表达水平增加,并可通过调控退化样家族成员4(vestigial-like family member 4,VGLL4)的表达来增强炎症信号,而使用腺相关病毒敲低Acsl4基因能够减轻小胶质细胞的炎症反应和PD模型小鼠的神经元损伤[30].脑与肌肉ARNT样蛋白1(brain and muscle ARNT-like 1,BMAL1)作为一种调节昼夜节律的核心蛋白,它的缺失会加剧PD小鼠模型中小胶质细胞激活和神经炎症反应,从而导致多巴胺能神经元的损伤加重,表现为运动功能障碍和多巴胺水平下降;进一步发现,BMAL1能够通过抑制NF-κB信号通路活性,降低小胶质细胞炎症因子的释放水平,从而保护多巴胺能神经元的存活[31].因此,小胶质细胞能够通过其吞噬功能清除损伤的突触和积累的α-syn,发挥一定的保护作用;另一方面,过度激活的小胶质细胞释放的炎症因子会导致神经元的损伤和死亡,加剧PD的进展. ...
1
... 除了α-syn与小胶质细胞的直接相互作用外,研究还揭示了多种对小胶质细胞功能有重要影响的信号通路,在PD的神经炎症和病理进展中同样具有关键作用.研究[29]发现,在PD小鼠模型中,小胶质细胞中的cGAS激活抗病毒炎症信号通路,导致神经炎症加剧和多巴胺能神经元损伤;而cGas基因敲除的模型小鼠神经炎症和神经毒性显著减轻,这提示cGAS可通过调控小胶质细胞的炎症反应影响PD的进展.长链酰基辅酶A合成酶家族成员4(acyl-CoA synthetase long-chain family member 4,ACSL4)在LPS的诱导下表达水平增加,并可通过调控退化样家族成员4(vestigial-like family member 4,VGLL4)的表达来增强炎症信号,而使用腺相关病毒敲低Acsl4基因能够减轻小胶质细胞的炎症反应和PD模型小鼠的神经元损伤[30].脑与肌肉ARNT样蛋白1(brain and muscle ARNT-like 1,BMAL1)作为一种调节昼夜节律的核心蛋白,它的缺失会加剧PD小鼠模型中小胶质细胞激活和神经炎症反应,从而导致多巴胺能神经元的损伤加重,表现为运动功能障碍和多巴胺水平下降;进一步发现,BMAL1能够通过抑制NF-κB信号通路活性,降低小胶质细胞炎症因子的释放水平,从而保护多巴胺能神经元的存活[31].因此,小胶质细胞能够通过其吞噬功能清除损伤的突触和积累的α-syn,发挥一定的保护作用;另一方面,过度激活的小胶质细胞释放的炎症因子会导致神经元的损伤和死亡,加剧PD的进展. ...
... 动物水平的研究进一步表明小胶质细胞功能变化对SAE的病理进展具有推动作用.在盲肠结扎穿刺(cecal ligation and puncture,CLP)诱导的小鼠SAE模型中,小胶质细胞过度激活,神经元焦亡,小鼠出现认知功能障碍[39].C-X-C模体趋化因子受体5(C-X-C motif chemokine receptor 5,CXCR5)在炎症、感染和免疫反应中起着重要作用.通过下调CXCR5,可以抑制p38丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)/NF-κB/信号转导与转录激活因子3(signal transducer and activator of transcription 3,STAT3)信号通路的活化,减少小胶质细胞的促炎症极化,促进其向M2抗炎症表型转化[41].研究[41]发现,Cxcr5基因敲除小鼠中,CLP诱导的海马小胶质细胞极化减弱,小鼠认知功能改善.在SAE的早期阶段,小胶质细胞介导的神经炎症对机体可能有一定的保护作用,但随着病情的恶化,小胶质细胞释放的炎症因子和神经毒性物质(如一氧化氮、ROS等)对神经元产生直接的毒性作用,可能导致神经元死亡,进而加剧SAE的发生发展. ...
... 动物水平的研究进一步表明小胶质细胞功能变化对SAE的病理进展具有推动作用.在盲肠结扎穿刺(cecal ligation and puncture,CLP)诱导的小鼠SAE模型中,小胶质细胞过度激活,神经元焦亡,小鼠出现认知功能障碍[39].C-X-C模体趋化因子受体5(C-X-C motif chemokine receptor 5,CXCR5)在炎症、感染和免疫反应中起着重要作用.通过下调CXCR5,可以抑制p38丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)/NF-κB/信号转导与转录激活因子3(signal transducer and activator of transcription 3,STAT3)信号通路的活化,减少小胶质细胞的促炎症极化,促进其向M2抗炎症表型转化[41].研究[41]发现,Cxcr5基因敲除小鼠中,CLP诱导的海马小胶质细胞极化减弱,小鼠认知功能改善.在SAE的早期阶段,小胶质细胞介导的神经炎症对机体可能有一定的保护作用,但随着病情的恶化,小胶质细胞释放的炎症因子和神经毒性物质(如一氧化氮、ROS等)对神经元产生直接的毒性作用,可能导致神经元死亡,进而加剧SAE的发生发展. ...
... 当前研究已逐步阐明IS病理进程中小胶质细胞介导的炎症反应分子机制.三结构域蛋白45(tripartite motif-containing 45,TRIM45)在脑缺血诱导的小鼠脑组织中表达显著上调,它通过激活NF-κB信号通路,促进小胶质细胞释放促炎症细胞因子和趋化因子;通过使用腺相关病毒敲低小鼠大脑皮层、海马CA1区小胶质细胞中的Trim45,发现Trim45基因敲低能够减少小鼠脑梗死面积,降低神经功能损伤并改善认知功能[44].沉默信息调节因子2家族成员5(silent information regulator 2 family member 5,SIRT5)是蛋白质去乙酰化酶sirtuin家族的一员,参与调控AD、PD等多种脑部疾病.研究表明,在原代小胶质细胞中,SIRT5通过去除膜联蛋白A1(annexin A1,ANXA1)的琥珀酰化修饰,激活小胶质细胞并释放促炎症细胞因子,从而加剧神经炎症和脑损伤[45].同样使用腺相关病毒敲低小鼠大脑皮层、海马CA1区中小胶质细胞的Sirt5,随后进行大脑中动脉阻塞(middle cerebral artery occlusion,MCAO)造模,发现Sirt5基因敲低小鼠有更小的脑梗死体积、更低的神经功能缺陷评分以及更好的认知功能[45].小胶质细胞在IS后迅速激活,并通过分泌促炎症细胞因子参与神经炎症反应.虽然短期的神经炎症反应在一定程度上有助于清除受损的细胞并启动修复过程,但长期或过度的炎症反应会加剧神经损伤,影响脑功能的恢复. ...
2
... 当前研究已逐步阐明IS病理进程中小胶质细胞介导的炎症反应分子机制.三结构域蛋白45(tripartite motif-containing 45,TRIM45)在脑缺血诱导的小鼠脑组织中表达显著上调,它通过激活NF-κB信号通路,促进小胶质细胞释放促炎症细胞因子和趋化因子;通过使用腺相关病毒敲低小鼠大脑皮层、海马CA1区小胶质细胞中的Trim45,发现Trim45基因敲低能够减少小鼠脑梗死面积,降低神经功能损伤并改善认知功能[44].沉默信息调节因子2家族成员5(silent information regulator 2 family member 5,SIRT5)是蛋白质去乙酰化酶sirtuin家族的一员,参与调控AD、PD等多种脑部疾病.研究表明,在原代小胶质细胞中,SIRT5通过去除膜联蛋白A1(annexin A1,ANXA1)的琥珀酰化修饰,激活小胶质细胞并释放促炎症细胞因子,从而加剧神经炎症和脑损伤[45].同样使用腺相关病毒敲低小鼠大脑皮层、海马CA1区中小胶质细胞的Sirt5,随后进行大脑中动脉阻塞(middle cerebral artery occlusion,MCAO)造模,发现Sirt5基因敲低小鼠有更小的脑梗死体积、更低的神经功能缺陷评分以及更好的认知功能[45].小胶质细胞在IS后迅速激活,并通过分泌促炎症细胞因子参与神经炎症反应.虽然短期的神经炎症反应在一定程度上有助于清除受损的细胞并启动修复过程,但长期或过度的炎症反应会加剧神经损伤,影响脑功能的恢复. ...
... 除以上化学药物治疗手段外,部分物理疗法作为一种更安全的治疗方法已经被广泛研究并在临床实践中展现出积极潜力.重复经颅磁刺激(repetitive transcranial magnetic stimulation,rTMS)被报道具有抗炎症和调节小胶质细胞功能的作用[59].IS后rTMS治疗可有效抑制缺血/再灌注诱导的M1型小胶质细胞,促使其从M1表型向M2表型转变,显著减弱大鼠脑卒中后的行为缺陷和梗死体积[60].而经颅直流电刺激(transcranial direct current stimulation,tDCS)对局灶性脑缺血小鼠的神经发生和神经炎症过程同样具有积极的调节作用.tDCS可刺激神经发生,并抑制小胶质细胞向M1表型极化,促进小胶质细胞向神经保护性M2表型极化[61].尽管以上的研究仍处于动物实验阶段,但这些方法因其安全性、可操作性和较少不良反应,展现出对疾病治疗的巨大潜力,值得进一步深入探索. ...
1
... 除以上化学药物治疗手段外,部分物理疗法作为一种更安全的治疗方法已经被广泛研究并在临床实践中展现出积极潜力.重复经颅磁刺激(repetitive transcranial magnetic stimulation,rTMS)被报道具有抗炎症和调节小胶质细胞功能的作用[59].IS后rTMS治疗可有效抑制缺血/再灌注诱导的M1型小胶质细胞,促使其从M1表型向M2表型转变,显著减弱大鼠脑卒中后的行为缺陷和梗死体积[60].而经颅直流电刺激(transcranial direct current stimulation,tDCS)对局灶性脑缺血小鼠的神经发生和神经炎症过程同样具有积极的调节作用.tDCS可刺激神经发生,并抑制小胶质细胞向M1表型极化,促进小胶质细胞向神经保护性M2表型极化[61].尽管以上的研究仍处于动物实验阶段,但这些方法因其安全性、可操作性和较少不良反应,展现出对疾病治疗的巨大潜力,值得进一步深入探索. ...
1
... 除以上化学药物治疗手段外,部分物理疗法作为一种更安全的治疗方法已经被广泛研究并在临床实践中展现出积极潜力.重复经颅磁刺激(repetitive transcranial magnetic stimulation,rTMS)被报道具有抗炎症和调节小胶质细胞功能的作用[59].IS后rTMS治疗可有效抑制缺血/再灌注诱导的M1型小胶质细胞,促使其从M1表型向M2表型转变,显著减弱大鼠脑卒中后的行为缺陷和梗死体积[60].而经颅直流电刺激(transcranial direct current stimulation,tDCS)对局灶性脑缺血小鼠的神经发生和神经炎症过程同样具有积极的调节作用.tDCS可刺激神经发生,并抑制小胶质细胞向M1表型极化,促进小胶质细胞向神经保护性M2表型极化[61].尽管以上的研究仍处于动物实验阶段,但这些方法因其安全性、可操作性和较少不良反应,展现出对疾病治疗的巨大潜力,值得进一步深入探索. ...