上海交通大学学报(医学版), 2025, 45(6): 792-799 doi: 10.3969/j.issn.1674-8115.2025.06.015

综述

2型糖尿病创面愈合中巨噬细胞代谢调控的研究进展

黄英荷1, 招冠钰1, 孙阳1, 侯鉴基1, 左勇,1,2

1.广东医科大学海洋医药研究院,湛江 524023

2.上海交通大学基础医学院生物化学与分子细胞生物学系,上海 200025

Research progress on macrophage metabolic regulation in wound healing of diabetes mellitus type 2

HUANG Yinghe1, ZHAO Guanyu1, SUN Yang1, HOU Jianji1, ZUO Yong,1,2

1.Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China

2.Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University College of Basic Medical Sciences, Shanghai 200025, China

通讯作者: 左 勇,研究员,博士;电子信箱:zuoyong@shsmu.edu.cn

编委: 崔黎明

收稿日期: 2025-02-24   接受日期: 2025-03-26   网络出版日期: 2025-06-23

基金资助: 国家自然科学基金.  81870321

Corresponding authors: ZUO Yong, E-mail:zuoyong@shsmu.edu.cn.

Received: 2025-02-24   Accepted: 2025-03-26   Online: 2025-06-23

作者简介 About authors

黄英荷(2001—),女,硕士生;电子信箱:1152451431@qq.com。 。

摘要

全球成人糖尿病患病率逐年递增,其中以2型糖尿病(diabetes mellitus type 2,T2DM)为主。T2DM是由胰岛素抵抗和胰岛素分泌不足引起的伴随糖、蛋白质和脂肪代谢紊乱的一种慢性疾病。创面愈合障碍是T2DM的主要并发症之一。研究表明T2DM患者创面愈合受巨噬细胞调控,并与其表型、活性和数量相关。不同表型的巨噬细胞在T2DM创面愈合的各个阶段扮演不同角色:M1型巨噬细胞参与创伤早期的炎症反应和病原体清除,M2型巨噬细胞在创面愈合后期发挥抗炎症作用并介导创面修复。巨噬细胞表型转换障碍影响创面炎症反应、皮肤细胞功能和细胞外基质(extracellular matrix,ECM)合成等过程,最终导致愈合障碍。目前,巨噬细胞代谢改变与表型转换之间的相互作用机制研究取得了显著进展,且这种动态关联可能通过协同调控参与T2DM创面的愈合进程。该文总结巨噬细胞在正常创面愈合与T2DM患者创面愈合中的功能特点,就病理环境下巨噬细胞糖代谢、脂质代谢和氨基酸代谢变化及这些变化对创面愈合的调控作用展开综述,并讨论靶向巨噬细胞代谢治疗创面愈合的应用前景。

关键词: 创面愈合 ; 2型糖尿病 ; 巨噬细胞 ; 代谢

Abstract

The global prevalence of diabetes among adults is increasing year by year, with diabetes mellitus type 2 (T2DM) being the most common form. T2DM is a chronic disease characterized by insulin resistance and insufficient insulin secretion, often accompanied by disturbances in glucose, protein, and lipid metabolism. Impaired wound healing is one of the major complications of T2DM. Studies have shown that wound healing in T2DM patients are regulated by macrophages and are closely related to their phenotype, activity, and abundance. Macrophages of different phenotypes play distinct roles in various stages of T2DM wound healing: M1 macrophages are involved in the early inflammatory response and pathogen clearance, while M2 macrophages contribute to anti-inflammatory responses and wound repair during later stages. Dysregulation of macrophage phenotype switching affects wound inflammatory response, skin cell function, and extracellular matrix (ECM) synthesis, ultimately leading to impaired healing. Significant progress has been made in understanding the interactions between macrophage metabolic changes and phenotype switching, and this dynamic relationship might play a synergistic role in regulating the wound healing process in T2DM. This review summarizes the functional roles of macrophages in both normal and T2DM-associated wound healing, discusses alterations in glucose, lipid, and amino acid metabolism in macrophages under pathological conditions, and explores how these metabolic shifts regulate wound healing. Furthermore, it examines the therapeutic potential of targeting macrophage metabolism to improve wound healing outcomes.

Keywords: wound healing ; diabetes mellitus type 2 (T2DM) ; macrophage ; metabolism

PDF (1990KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

黄英荷, 招冠钰, 孙阳, 侯鉴基, 左勇. 2型糖尿病创面愈合中巨噬细胞代谢调控的研究进展. 上海交通大学学报(医学版)[J], 2025, 45(6): 792-799 doi:10.3969/j.issn.1674-8115.2025.06.015

HUANG Yinghe, ZHAO Guanyu, SUN Yang, HOU Jianji, ZUO Yong. Research progress on macrophage metabolic regulation in wound healing of diabetes mellitus type 2. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2025, 45(6): 792-799 doi:10.3969/j.issn.1674-8115.2025.06.015

2型糖尿病(diabetes mellitus type 2,T2DM)以胰岛素抵抗为病理特征,主要表现为组织细胞对胰岛素介导的葡萄糖利用的反应性降低。这种代谢异常会导致多种并发症,其中创面愈合障碍尤为常见1

T2DM创面在持续的高糖微环境下可诱导皮肤细胞功能受损,是影响愈合的核心因素2。高糖环境不仅直接影响创面细胞的增殖和分化,还通过影响血管生成、胶原合成等过程,间接阻碍创面愈合3-4。T2DM状态下免疫系统的异常激活和炎症反应的持续存在,也是导致创面愈合障碍的重要原因。在创面的免疫细胞中,巨噬细胞不仅参与早期的炎症反应,还能分泌多种细胞因子和生长因子,调控包括成纤维细胞和内皮细胞在内的多种细胞的功能5

T2DM环境下,巨噬细胞的代谢调控机制出现异常,表型和功能发生改变,进而影响创面愈合6。目前许多研究致力于通过调控创面中巨噬细胞的表型来解决过度炎症导致的创面愈合障碍。此外,厘清巨噬细胞代谢规律有助于改善巨噬细胞功能,为治疗T2DM创面愈合障碍提供新思路。

1 巨噬细胞对创面愈合的调控作用

巨噬细胞具有高度的可塑性,在特殊的环境刺激下能产生不同的功能表型,该过程也称为“极化”7。巨噬细胞的极化类型可大致分为经典激活的M1表型和替代激活的M2表型。在正常创面愈合中,巨噬细胞参与微生物清除、炎症反应、瘢痕形成和创面修复,并逐渐从M1表型转化为M2表型8-9。然而,T2DM诱导的高糖微环境导致巨噬细胞表型和功能失调,最终造成难以愈合的创面6

1.1 巨噬细胞对正常创面愈合的调控作用

皮肤创面愈合是一个复杂的病理生理过程,一般要经历止血期、炎症期、肉芽组织增生期和细胞外基质(extracellular matrix,ECM)重塑期4个连续的阶段10。巨噬细胞功能不仅受ECM调节,还通过复杂的细胞通信与多种细胞相互作用,参与皮肤创面愈合。

在炎症期,被募集到受损部位的单核细胞分化为巨噬细胞,促进皮肤常驻巨噬细胞的活化。被激活的M1型巨噬细胞分泌肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、白介素-1β(interleukin-1β,IL-1β)和IL-6等因子促进创面炎症反应8。同时,中性粒细胞通过释放NO、活性氧(reactive oxygen species,ROS)和中性粒细胞胞外诱捕网(neutrophil extracellular trap,NET)杀灭创面的病原微生物11。巨噬细胞还负责吞噬创面中凋亡的中性粒细胞,向创面成纤维细胞发出信号,释放转化生长因子β1(transforming growth factor-β1,TGF-β1)并诱导其转化为肌成纤维细胞,以调节ECM的沉积和重塑,促进创面收缩和愈合12。此时巨噬细胞从促炎症的M1表型转变为促修复的M2表型。M2型巨噬细胞分泌精氨酸酶1(arginase-1,Arg-1)、IL-10等因子促进瘢痕形成和创面修复9。随着M2型巨噬细胞主导微环境,促炎症因子和ROS水平有所降低,同时血管新生以及成纤维细胞和其他皮肤细胞增殖、迁移和分化等修复性活动启动,最终推动炎症消退并促使创面修复过渡到肉芽组织增生期。在ECM重塑期,创面巨噬细胞数量下降,剩余的巨噬细胞通过分泌基质金属蛋白酶(matrix metalloproteinase,MMP)去除多余的胶原蛋白和纤维蛋白沉积物,调控ECM合成与降解的平衡13。此外,巨噬细胞还与血管内皮细胞相互作用,介导皮肤中淋巴细胞的募集和血管生成14

总之,巨噬细胞参与创伤后皮肤愈合的病理过程(图1)。其功能失衡会影响皮肤的正常愈合。如长期感染导致的M1型巨噬细胞持续存在会导致炎症期延长,造成创面难以愈合;而M2型巨噬细胞的持续存在则会延长肉芽组织增生期,形成皮肤的病理性瘢痕15。因此,维持巨噬细胞的功能和可塑性是保证创面正常愈合的重要因素。

图1

图1   正常创面愈合过程中巨噬细胞的作用机制

Note: A. Hemostasis period. B. Inflammatory response period. C. Granulation tissue proliferation period. D. ECM remodeling period. DAMPs—damage-associated molecular patterns; NOX1—NADPH oxidase 1; NOX2—NADPH oxidase 2; VEGF—vascular endothelial growth factor; PDGF—platelet-derived growth factor.

Fig 1   Mechanisms of macrophage function in normal wound healing


1.2 巨噬细胞对T2DM创面愈合的调控作用

T2DM创面常以微血管生成障碍、长期持续的炎症反应、高ROS水平以及持续的细菌感染等为特征6。在炎症期,持续的高糖微环境使创面中晚期糖基化终产物(advanced glycation end product,AGE)表达增加,AGE与M1型巨噬细胞表面的AGE受体结合造成ROS产生、炎症、氧化应激增加和细胞凋亡等一系列不良后果16。一方面,T2DM患者创面的高糖微环境为微生物的生长提供了充足养分6,同时异常积累的AGE削弱了巨噬细胞对病原体的清除能力。这种免疫功能障碍使创面细菌快速繁殖,进一步触发免疫细胞募集机制,导致炎症反应过度激活17。随着氧化应激水平增加,成纤维细胞、内皮细胞凋亡增多,且凋亡细胞无法被及时清除,从而影响创面的上皮化和胶原沉积18。上述情况最终形成“高糖-感染-炎症”的恶性循环。另一方面,炎症和氧化应激反过来促进AGE的产生,它们之间的相互作用最终介导T2DM创面的愈合障碍16。此外,T2DM环境还会导致巨噬细胞发生程序性细胞死亡,干扰T2DM创面的炎症反应、上皮化、肉芽组织形成等过程18

在T2DM创面中,M1型巨噬细胞向M2型转换的平衡被打破是造成创面愈合障碍的关键因素。T2DM创面微血管生成障碍造成的缺氧微环境以及T2DM本身的高糖微环境通过诱导巨噬细胞表观遗传修饰的改变,促使巨噬细胞更多地极化为炎症相关表型46。T2DM患者血浆中抗血管生成因子如色素上皮衍生因子(pigment epithelium-derived factor,PEDF)水平升高,而愈合相关通路mTOR的激活水平降低,使巨噬细胞释放的TGF-β1减少,这阻碍了成纤维细胞、内皮细胞和角质形成细胞的增殖和迁移,进而抑制了愈合过程中的胶原蛋白沉积、新生血管形成和再上皮化进程419

综上所述,T2DM创面巨噬细胞的功能和极化状态可影响创面的正常愈合。促进T2DM创面巨噬细胞表型的正常转化能有效解决创面愈合障碍的难题20

2 创面愈合中巨噬细胞的代谢调控与靶向干预策略

代谢组学分析显示,长期的高血糖和胰岛素抵抗导致T2DM患者的糖代谢、脂质代谢和氨基酸代谢发生改变21。巨噬细胞对T2DM等代谢综合征中葡萄糖和脂质水平的变化尤其敏感,导致单核细胞来源的巨噬细胞表型也发生改变22-23。在T2DM中,机体的代谢紊乱同样影响巨噬细胞的代谢,使巨噬细胞产生特定的T2DM相关功能表型24。因此,深入了解巨噬细胞在正常创面与T2DM创面中代谢模式的差异,有助于阐明T2DM创面愈合障碍的病理机制,为开发出特异性的治疗方案提供理论依据。

2.1 创面巨噬细胞糖代谢与靶向干预策略

在皮肤损伤早期,由于创面血供不足和局部氧需求量增加,导致M1巨噬细胞内获取ATP的方式由氧化磷酸化(oxidative phosphorylation,OXPHOS)转变为糖酵解25。这一转变有利于产生NADPH、NO和ROS,进而在巨噬细胞活化和细菌杀伤中发挥作用22。同时,激活的M1巨噬细胞中三羧酸循环(tricarboxylic acid cycle,TCA)关键酶(异柠檬酸脱氢酶和琥珀酸脱氢酶)转录水平受到抑制,导致柠檬酸和琥珀酸堆积(图2)。柠檬酸促进ROS和缺氧诱导因子1α(hypoxia-inducible factor-1α,HIF-1α)的产生和表达。过量的琥珀酸则抑制脯氨酸羟化酶的活性,同样参与维持HIF-1α的稳定性26。HIF-1α的表达通过上调糖酵解基因的转录,维持M1型巨噬细胞的糖酵解代谢27。随着愈合进程,M2型巨噬细胞逐渐占据主导地位,其代谢特征转变为增强的OXPHOS和完整的TCA(图2),为组织修复提供充足的能量28-29。值得注意的是,糖酵解产物乳酸能通过表观遗传修饰促进巨噬细胞M2表型的极化并驱动负反馈回路抑制糖酵解以减少促炎症介质的释放,在巨噬细胞表型转换和炎症消退中发挥重要作用30

图2

图2   创面中巨噬细胞代谢机制图

Note: Phe—phenylalanine; Gln—glutamine; Glu—glutamic acid; Arg—arginine; Orn—ornithine; Cit—citrulline; CPTⅡ—carnitine palmotoyltransferase Ⅱ; Arg-1—arginase-1.

Fig 2   Diagram of macrophage metabolic mechanisms in wounds


然而,在高糖环境下,这一精细的代谢调控网络可能被破坏。T2DM创面ATP含量降低、ROS积累和线粒体功能障碍等一系列变化,使巨噬细胞糖酵解反应增强并长期滞留在M1状态,最终延缓创面的愈合2831。多元醇途径是糖酵解的辅助途径。高血糖刺激下,通过该途径代谢的葡萄糖增加,该过程抑制抗氧化剂谷胱甘肽(glutathione,GSH)的表达,同时诱导AGE和ROS产生,最终促进氧化应激和炎症反应的发生32

针对T2DM创面的糖代谢变化,目前提出了多种干预政策。包括:使用抗氧化剂如维生素C、维生素E、N-乙酰半胱氨酸等降低创面中的ROS水平33,通过纳米载药技术递送ATP改善能量供应34,抑制糖酵解关键酶如己糖激酶和磷酸果糖激酶的活性来抑制糖酵解、促进TCA循环正常化35、抑制多元醇途径的过度活化等36。此外,TCA循环代谢物在创面愈合的干预中展现出独特潜力。例如,一种衣康酸衍生物衣康酸4-辛酯(OI)进入细胞后能重新转化为衣康酸,通过调节线粒体代谢和巨噬细胞极化,加速T2DM小鼠创面愈合37。抑制TCA中琥珀酸脱氢酶的活性或促进产物GAPDH生成,能够抑制炎症并诱导皮肤纤维化,从而促进皮肤的愈合;该方法有望成为一种可行的T2DM创面治疗策略25

2.2 创面巨噬细胞脂质代谢与靶向干预策略

健康皮肤在损伤后真皮脂肪细胞的脂肪分解增多,释放的脂肪酸募集并激活促炎症巨噬细胞,从而加速创面区域的病原体清除和血管再生38。在M1型巨噬细胞中,柠檬酸堆积并转运至细胞质后,在酶的催化下生成乙酰辅酶A参与脂质合成39。脂质合成不仅是产生炎症介质的关键,也为巨噬细胞提供了维持肌动蛋白细胞骨架结构和细胞膜变形所需的脂质,从而维持巨噬细胞的吞噬功能39。脂肪酸合酶(fatty acid synthase,FAS)是脂肪酸合成的关键酶,对M1型巨噬细胞的诱导具有重要作用。研究38发现,FAS的缺失会减少脂肪巨噬细胞的募集并削弱炎症反应强度。

脂肪酸氧化(fatty acid oxidation,FAO)主要发生在M2型巨噬细胞内(图2),该过程主要以脂肪酸为原料合成线粒体氧化呼吸所需的能量40。游离脂肪酸(free fatty acid,FFA)与白蛋白结合,被巨噬细胞的膜转运蛋白CD36识别后内吞41。中短链脂肪酸和长链脂肪酸则以不同的方式进入线粒体,经过一系列反应后进入TCA循环参与ATP的合成,为M2巨噬细胞OXPHOS提供能量25。中链脂肪酸还负责激活巨噬细胞上的GPR84受体,通过促进GPR84信号转导来支持皮肤创面闭合42。在炎症早期,GPR84主要介导炎症性巨噬细胞的浸润,这对于创面愈合也是必不可少的43

T2DM创面长期的细菌感染使创面pH呈碱性(pH>7.3)36。偏碱性的微环境会导致β-葡萄糖脑苷脂酶(β-glucocerebrosidase,β-GD)和酸性鞘磷脂酶(acid sphingomyelinase,ASM)发生不可逆的失活44。作为细胞膜成分鞘磷脂的代谢酶,β-GD和ASM的失活可直接导致鞘磷脂代谢产生的神经酰胺减少。神经酰胺是内化作用所必需的,因此2种酶的失活最终导致巨噬细胞的吞噬作用受损45

肥胖T2DM患者循环中升高的甘油三酯和FFA会加重巨噬细胞代谢负担,导致线粒体损伤46。肥胖状态下,脂肪细胞分泌趋化因子,募集大量单核细胞使其转化为脂肪组织巨噬细胞(adipose tissue macrophages,ATM),负责清除脂肪细胞碎片和脂滴。死亡脂肪细胞释放的外泌体、脂肪因子、细胞因子和脂质等,可局部诱导ATM代谢激活和脂质代谢增加,这可能导致脂肪组织炎症47。阐明这些脂肪组织中巨噬细胞的代谢模式对于消除肥胖T2DM患者创面炎症同样重要。

虽然靶向脂质代谢治疗T2DM创面的策略尚未充分发展,但CHI等48发现,巨噬细胞分泌的脂质分子——11, 12-环氧二十碳三烯酸(11, 12-EET),能促进人肌肉组织中原代肌肉干细胞的激活和增殖,促进组织的修复。这一发现为巨噬细胞脂质代谢产物参与皮肤损伤修复提供了重要理论依据。

2.3 创面巨噬细胞氨基酸代谢与靶向干预策略

巨噬细胞对精氨酸、谷氨酰胺和苯丙氨酸等关键氨基酸的代谢在创面愈合中发挥核心调控作用。在生理状态下,巨噬细胞的精氨酸代谢呈现出明显的表型依赖性特征(图2):M1型巨噬细胞通过诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)途径将精氨酸转化为NO,参与免疫反应、血管生成、上皮化和肉芽组织形成等创面愈合的关键步骤49。而M2型巨噬细胞则通过Arg-1途径将精氨酸分解为鸟氨酸,进而转化为促进组织修复的亚精胺50。谷氨酰胺则通过双重机制参与创面修复,既能通过增加创面中精氨酸和瓜氨酸的浓度来维持NO生成51,还参与合成氨基糖和核苷酸糖,为胶原纤维和新血管形成提供原料52。值得注意的是,谷氨酰胺的代谢特征与巨噬细胞表型密切相关,尤其对M2巨噬细胞具有显著调控作用53。M2巨噬细胞增强谷氨酰胺的摄取和合成。一方面谷氨酰胺通过分解α-酮戊二酸增加OXPHOS和FAO诱导巨噬细胞M2表型。另一方面通过谷氨酰胺-尿苷二磷酸(UDP)-N-乙酰-D-半乳糖胺(GlcNAc)通路支持M2型巨噬细胞转化54。苯丙氨酸则无法靠人体自身合成,通常情况下从饮食中摄入的苯丙氨酸被苯丙氨酸羟化酶代谢为酪氨酸。

然而,在T2DM状态下这些氨基酸的代谢途径出现紊乱。T2DM大鼠免疫细胞中Arg-1活性增加52,精氨酸代谢向Arg-1途径偏移,导致促修复的胶原合成不足。T2DM病理条件下,苯丙氨酸异常转化为苯丙酮酸,促进NOD样受体热蛋白结构域蛋白3(NLRP3)炎症小体激活并阻碍巨噬细胞向M2表型极化55。同时存在谷氨酰胺供需失衡的矛盾现象。在应对T2DM创面持续感染期间,巨噬细胞会增加对谷氨酰胺的摄取56,然而肥胖患者肌肉的减少和谷氨酰胺酶活性的升高,导致血清中的谷氨酰胺浓度显著降低54。因此,谷氨酰胺供应不足可能是引起肥胖T2DM患者创面巨噬细胞表型转换障碍的因素之一。

更复杂的是,T2DM患者血清中支链氨基酸(亮氨酸、缬氨酸和异亮氨酸)和芳香族氨基酸(酪氨酸和苯丙氨酸)水平异常升高57。这些变化可能影响巨噬细胞对氨基酸的利用,从而影响巨噬细胞代谢和功能。同时溶酶体兴奋性氨基酸转运蛋白2(excitatory amino acid transporter 2,EAAT2)在巨噬细胞中过度表达58;EAAT2高表达通过诱导溶酶体释放谷氨酸和天冬氨酸激活液泡ATP酶(vacuolar ATPase,V-ATPase);活化的V-ATPase一方面促进巨噬细胞对营养物质的摄取,另一方面通过激活mTORC1通路增强糖酵解过程,促进TNF-α和IL-6的释放,以维持巨噬细胞的促炎症状态。这或许能解释高糖环境下单核细胞明显表现出M1样活性的现象59。除此之外,一般性调控阻遏蛋白激酶2(general control nonderepressible 2,GCN2)在T2DM皮肤创面中表达下调60;作为感知氨基酸缺乏的重要传感器,GCN2缺乏进一步抑制了巨噬细胞从M2表型向M1表型转换的能力。

基于上述发现,靶向氨基酸代谢的干预策略显示出良好的治疗前景。例如,补充苯丙氨酸能通过增强M1巨噬细胞的OXPHOS和减少IL-1β产生发挥抗炎症作用61。苯丙氨酸的结构衍生物水凝胶,也被证明可以促进Ⅰ型胶原的吸附,促进角质形成细胞增殖和迁移,在糖尿病小鼠的全层皮肤缺损模型中表现出有效的促愈合作用62。除此之外,调节精氨酸代谢可平衡NO生成和胶原合成,而靶向谷氨酰胺可能改善M2巨噬细胞极化障碍。这些都为开发针对T2DM创面的精准代谢干预手段提供了新的思路和潜在靶点。

3 总结

T2DM创面愈合障碍的核心在于高糖微环境引发的多重病理机制。持续的高血糖状态通过影响巨噬细胞代谢和表型延迟创面愈合时间。在代谢层面,T2DM病理因素下的巨噬细胞通过改变代谢模式获取能量,造成炎症产物(如ROS、NO、HIF-α)的积累以及脂肪酸、代谢相关酶活性的改变。在表型层面,不同的代谢产物可以通过激活信号通路和改变代谢方式来诱导巨噬细胞表型。具体包括:①糖酵解产生的ROS激活MAPK通路,进一步通过抑制线粒体氧化呼吸和促进糖酵解,导致M1巨噬细胞的积累和炎症产物的生成。②谷氨酰胺通过分解α-酮戊二酸增加OXPHOS和FAO,或通过谷氨酰胺-UDP-GlcNAc通路诱导巨噬细胞M2表型。③苯丙氨酸代谢物苯丙酮酸通过激活NLRP3抑制M1巨噬细胞向M2表型转换。因此,结合代谢组学对巨噬细胞在T2DM病理条件下的代谢模式进行研究,有助于深入了解其病理机制并提出相应的创新解决方案。除此之外,TCA作为糖、脂肪、氨基酸三大营养物质转换的枢纽,其动态平衡通过改变巨噬细胞能量分配进一步加剧炎症。关注其在创面愈合中的运行情况或能为临床前研究提供一些新思路。

T2DM创面治疗的核心挑战在于改变其特有的过度炎症微环境。这种病理状态不同于慢性炎症,表现为促炎症因子短时间内大量释放、炎症消退机制受损等特征。为精确模拟这一现象,相关研究主要利用糖尿病小鼠模型(ob/ob或db/db小鼠),以及采用高脂饮食喂养联合注射低剂量链脲佐菌素(STZ)的方式诱导大鼠肥胖和胰岛素抵抗63。其中,大鼠模型因其较大的体表面积以及低成本等优势,成为优选的动物模型。通过标准化的全层手术切口和背部皮肤切除伤口,可有效模拟T2DM患者创面的典型过度炎症环境。然而,动物模型与人类疾病在炎症反应强度和代谢代偿能力上始终存在差异。现有理论大多来自动物模型研究,若要实际应用于人体,其可行性还需漫长的临床转化过程来验证。

从临床转化的角度看,T2DM特有的病理微环境对药物疗效产生显著影响。以美国FDA目前唯一批准的生长因子制剂Becaplermin凝胶为例64,虽然其理论上可通过刺激巨噬细胞和成纤维细胞活化和增殖促进胶原形成,但在实际应用中面临双重挑战:一方面,创面局部升高的TGF-β3水平会抑制药物与靶受体的结合;另一方面,T2DM导致的微循环障碍严重影响了药物的递送和分布。基于当前困境,未来的研究重点应当聚焦于开发靶向巨噬细胞特定代谢通路的新型调节剂、优化现有给药系统以及建立更具临床相关性的研究模型(如人源化动物模型)等关键方向。此外,调整饮食中的营养结构,如增加精氨酸、谷氨酰胺、多不饱和脂肪酸Omega-365,以及减少苯丙氨酸52的摄入等,通过抗炎症、代谢调节和营养支持促进创面愈合,可作为T2DM创面愈合治疗的重要辅助手段。

作者贡献声明

黄英荷负责确定文章选题、结构,文献收集,写作及修改工作;招冠钰参与文章选题、文献收集和修改;孙阳、侯鉴基参与文章修改;左勇负责写作指导和修改。所有作者均阅读并同意了最终稿件提交。

AUTHOR's CONTRIBUTIONS

HUANG Yinghe was responsible for determining the topic and structure, collecting literature, and writing and revising the manuscript. ZHAO Guanyu participated in the topic selection, literature collection, and revision of the manuscript. SUN Yang and HOU Jianji participated in the revision of the manuscript. ZUO Yong was responsible for writing guidance and revision. All authors have read the final version of the paper and consented to its submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

FREEDMAN B R, HWANG C, TALBOT S, et al. Breakthrough treatments for accelerated wound healing[J]. Sci Adv, 2023, 9(20): eade7007.

[本文引用: 1]

YU F X, LEE P S Y, YANG L L, et al. The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas[J]. Prog Retin Eye Res, 2022, 89: 101039.

[本文引用: 1]

KAUSHIK K, DAS A. TWIST1-reprogrammed endothelial cell transplantation potentiates neovascularization-mediated diabetic wound tissue regeneration[J]. Diabetes, 2020, 69(6): 1232-1247.

[本文引用: 1]

GUO W, QIU W, AO X, et al. Low-concentration DMSO accelerates skin wound healing by Akt/mTOR-mediated cell proliferation and migration in diabetic mice[J]. Br J Pharmacol, 2020, 177(14): 3327-3341.

[本文引用: 3]

SHARIFIAGHDAM M, SHAABANI E, FARIDI-MAJIDI R, et al. Macrophages as a therapeutic target to promote diabetic wound healing[J]. Mol Ther, 2022, 30(9): 2891-2908.

[本文引用: 1]

WOLF S J, MELVIN W J, GALLAGHER K. Macrophage-mediated inflammation in diabetic wound repair[J]. Semin Cell Dev Biol, 2021, 119: 111-118.

[本文引用: 5]

ZHOU B S, MAGANA L, HONG Z G, et al. The angiocrine Rspondin3 instructs interstitial macrophage transition via metabolic-epigenetic reprogramming and resolves inflammatory injury[J]. Nat Immunol, 2020, 21(11): 1430-1443.

[本文引用: 1]

XIE J, WU X W, ZHENG S, et al. Aligned electrospun poly(L-lactide) nanofibers facilitate wound healing by inhibiting macrophage M1 polarization via the JAK-STAT and NF-κB pathways[J]. J Nanobiotechnology, 2022, 20(1): 342.

[本文引用: 2]

SHAN X, HU P H, NI L N, et al. Serine metabolism orchestrates macrophage polarization by regulating the IGF1-p38 axis[J]. Cell Mol Immunol, 2022, 19(11): 1263-1278.

[本文引用: 2]

AUDU C O, MELVIN W J, JOSHI A D, et al. Macrophage-specific inhibition of the histone demethylase JMJD3 decreases STING and pathologic inflammation in diabetic wound repair[J]. Cell Mol Immunol, 2022, 19(11): 1251-1262.

[本文引用: 1]

PEÑA O A, MARTIN P. Cellular and molecular mechanisms of skin wound healing[J]. Nat Rev Mol Cell Biol, 2024, 25(8): 599-616.

[本文引用: 1]

BRAZIL J C, QUIROS M, NUSRAT A, et al. Innate immune cell-epithelial crosstalk during wound repair[J]. J Clin Invest, 2019, 129(8): 2983-2993.

[本文引用: 1]

APAYDIN O, ALTAIKYZY A, FILOSA A, et al. Alpha-1 adrenergic signaling drives cardiac regeneration via extracellular matrix remodeling transcriptional program in zebrafish macrophages[J]. Dev Cell, 2023, 58(22): 2460-2476.e7.

[本文引用: 1]

REYNOLDS G, VEGH P, FLETCHER J, et al. Developmental cell programs are co-opted in inflammatory skin disease[J]. Science, 2021, 371(6527): eaba6500.

[本文引用: 1]

ZHAO P X, CAI Z S, ZHANG X J, et al. Hydrogen attenuates inflammation by inducing early M2 macrophage polarization in skin wound healing[J]. Pharmaceuticals (Basel), 2023, 16(6): 885.

[本文引用: 1]

RUNGRATANAWANICH W, QU Y, WANG X, et al. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury[J]. Exp Mol Med, 2021, 53(2): 168-188.

[本文引用: 2]

WONG S L, DEMERS M, MARTINOD K, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing[J]. Nat Med, 2015, 21(7): 815-819.

[本文引用: 1]

SONG J Y, ZHU K Y, WANG H P, et al. Deciphering the emerging role of programmed cell death in diabetic wound healing[J]. Int J Biol Sci, 2023, 19(15): 4989-5003.

[本文引用: 2]

LIU Y, LI Z N, LI W D, et al. Discovery of β-sitosterol's effects on molecular changes in rat diabetic wounds and its impact on angiogenesis and macrophages[J]. Int Immunopharmacol, 2024, 126: 111283.

[本文引用: 1]

ZHANG X Y, WU Y, GONG H, et al. A multifunctional herb-derived glycopeptide hydrogel for chronic wound healing[J]. Small, 2024, 20(36): e2400516.

[本文引用: 1]

ZHANG F X, SHAN S, FU C L, et al. Advanced mass spectrometry-based biomarker identification for metabolomics of diabetes mellitus and its complications[J]. Molecules, 2024, 29(11): 2530.

[本文引用: 1]

VAN DEN BOSSCHE J, BAARDMAN J, OTTO N A, et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages[J]. Cell Rep, 2016, 17(3): 684-696.

[本文引用: 2]

PILLON N J, LOOS R J F, MARSHALL S M, et al. Metabolic consequences of obesity and type 2 diabetes: balancing genes and environment for personalized care[J]. Cell, 2021, 184(6): 1530-1544.

[本文引用: 1]

RUSSO S, KWIATKOWSKI M, GOVORUKHINA N, et al. Meta-inflammation and metabolic reprogramming of macrophages in diabetes and obesity: the importance of metabolites[J]. Front Immunol, 2021, 12: 746151.

[本文引用: 1]

EMING S A, MURRAY P J, PEARCE E J. Metabolic orchestration of the wound healing response[J]. Cell Metab, 2021, 33(9): 1726-1743.

[本文引用: 3]

MOUTON A J, LI X, HALL M E, et al. Obesity, hypertension, and cardiac dysfunction: novel roles of immunometabolism in macrophage activation and inflammation[J]. Circ Res, 2020, 126(6): 789-806.

[本文引用: 1]

BOUTENS L, HOOIVELD G J, DHINGRA S, et al. Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses[J]. Diabetologia, 2018, 61(4): 942-953.

[本文引用: 1]

HE X T, LI X, ZHANG M, et al. Role of molybdenum in material immunomodulation and periodontal wound healing: targeting immunometabolism and mitochondrial function for macrophage modulation[J]. Biomaterials, 2022, 283: 121439.

[本文引用: 2]

WILLENBORG S, SANIN D E, JAIS A, et al. Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing[J]. Cell Metab, 2021, 33(12): 2398-2414.e9.

[本文引用: 1]

ZHANG D, TANG Z Y, HUANG H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779): 575-580.

[本文引用: 1]

KOTWAL G J, CHIEN S F. Macrophage differentiation in normal and accelerated wound healing[J]. Results Probl Cell Differ, 2017, 62: 353-364.

[本文引用: 1]

HUANG F, LU X Y, YANG Y, et al. Microenvironment-based diabetic foot ulcer nanomedicine[J]. Adv Sci (Weinh), 2023, 10(2): e2203308.

[本文引用: 1]

LIN C W, HUNG C M, CHEN W J, et al. New horizons of macrophage immunomodulation in the healing of diabetic foot ulcers[J]. Pharmaceutics, 2022, 14(10): 2065.

[本文引用: 1]

YAO Y M, ZHANG H. Better therapy for combat injury[J]. Mil Med Res, 2019, 6(1): 23.

[本文引用: 1]

LI Q H, SONG H J, LI S Y, et al. Macrophage metabolism reprogramming EGCG-Cu coordination capsules delivered in polyzwitterionic hydrogel for burn wound healing and regeneration[J]. Bioact Mater, 2023, 29: 251-264.

[本文引用: 1]

ZHANG K, LU W C, ZHANG M, et al. Reducing host aldose reductase activity promotes neuronal differentiation of transplanted neural stem cells at spinal cord injury sites and facilitates locomotion recovery[J]. Neural Regen Res, 2022, 17(8): 1814-1820.

[本文引用: 2]

HE J B, ZHOU S S, WANG J X, et al. Anti-inflammatory and anti-oxidative electrospun nanofiber membrane promotes diabetic wound healing via macrophage modulation[J]. J Nanobiotechnology, 2024, 22(1): 116.

[本文引用: 1]

BATISTA-GONZALEZ A, VIDAL R, CRIOLLO A, et al. New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages[J]. Front Immunol, 2020, 10: 2993.

[本文引用: 2]

LEE J H, PHELAN P, SHIN M, et al. SREBP-1a-stimulated lipid synthesis is required for macrophage phagocytosis downstream of TLR4-directed mTORC1[J]. Proc Natl Acad Sci USA, 2018, 115(52): E12228-E12234.

[本文引用: 2]

VASSILIOU E, FARIAS-PEREIRA R. Impact of lipid metabolism on macrophage polarization: implications for inflammation and tumor immunity[J]. Int J Mol Sci, 2023, 24(15): 12032.

[本文引用: 1]

SHOOK B A, WASKO R R, MANO O, et al. Dermal adipocyte lipolysis and myofibroblast conversion are required for efficient skin repair[J]. Cell Stem Cell, 2020, 26(6): 880-895.e6.

[本文引用: 1]

COOPER P O, KLEB S S, NOONEPALLE S K, et al. G-protein-coupled receptor 84 regulates acute inflammation in normal and diabetic skin wounds[J]. Cell Rep, 2024, 43(6): 114288.

[本文引用: 1]

JETTEN N, ROUMANS N, GIJBELS M J, et al. Wound administration of M2-polarized macrophages does not improve murine cutaneous healing responses[J]. PLoS One, 2014, 9(7): e102994.

[本文引用: 1]

PERCIVAL S L, MCCARTY S, HUNT J A, et al. The effects of pH on wound healing, biofilms, and antimicrobial efficacy[J]. Wound Repair Regen, 2014, 22(2): 174-186.

[本文引用: 1]

OLONA A, HATELEY C, MURALIDHARAN S, et al. Sphingolipid metabolism during toll-like receptor 4 (TLR4)-mediated macrophage activation[J]. Br J Pharmacol, 2021, 178(23): 4575-4587.

[本文引用: 1]

HE L, WEBER K J, SCHILLING J D. Glutamine modulates macrophage lipotoxicity[J]. Nutrients, 2016, 8(4): 215.

[本文引用: 1]

PAN Y, HUI X Y, HOO R L C, et al. Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation[J]. J Clin Invest, 2019, 129(2): 834-849.

[本文引用: 1]

CHI Z X, CHEN S, YANG D H, et al. Gasdermin D-mediated metabolic crosstalk promotes tissue repair[J]. Nature, 2024, 634(8036): 1168-1177.

[本文引用: 1]

DEBATS I G, WOLFS T M, GOTOH T, et al. Role of arginine in superficial wound healing in man[J]. Nitric Oxide, 2009, 21(3/4): 175-183.

[本文引用: 1]

ITO D, ITO H, IDETA T, et al. Systemic and topical administration of spermidine accelerates skin wound healing[J]. Cell Commun Signal, 2021, 19(1): 36.

[本文引用: 1]

ARRIBAS-LÓPEZ E, ZAND N, OJO O, et al. The effect of amino acids on wound healing: a systematic review and meta-analysis on arginine and glutamine[J]. Nutrients, 2021, 13(8): 2498.

[本文引用: 1]

LIU Y, SHI J P, XIONG W, et al. Production of an animal model of semi-Yin and semi-Yang syndrome with diabetic ulcers and study of its pathological and metabolic features[J]. Evid Based Complement Alternat Med, 2021, 2021: 6345147.

[本文引用: 3]

MANCHANDA M, TORRES M, INUOSSA F, et al. Metabolic reprogramming and reliance in human skin wound healing[J]. J Invest Dermatol, 2023, 143(10): 2039-2051.e10.

[本文引用: 1]

REN W K, XIA Y Y, CHEN S Y, et al. Glutamine metabolism in macrophages: a novel target for obesity/type 2 diabetes[J]. Adv Nutr, 2019, 10(2): 321-330.

[本文引用: 2]

LV D M, CAO X L, ZHONG L, et al. Targeting phenylpyruvate restrains excessive NLRP3 inflammasome activation and pathological inflammation in diabetic wound healing[J]. Cell Rep Med, 2023, 4(8): 101129.

[本文引用: 1]

ZHAO M N, WANG K Y, LIN R, et al. Influence of glutamine metabolism on diabetes development: a scientometric review[J]. Heliyon, 2024, 10(4): e25258.

[本文引用: 1]

GIESBERTZ P, DANIEL H. Branched-chain amino acids as biomarkers in diabetes[J]. Curr Opin Clin Nutr Metab Care, 2016, 19(1): 48-54.

[本文引用: 1]

GAN Z D, GUO Y, ZHAO M Y, et al. Excitatory amino acid transporter supports inflammatory macrophage responses[J]. Sci Bull (Beijing), 2024, 69(15): 2405-2419.

[本文引用: 1]

YAN J L, TIE G D, WANG S Y, et al. Diabetes impairs wound healing by Dnmt1-dependent dysregulation of hematopoietic stem cells differentiation towards macrophages[J]. Nat Commun, 2018, 9(1): 33.

[本文引用: 1]

HOU Y X, WEI D, ZHANG Z Q, et al. Downregulation of nutrition sensor GCN2 in macrophages contributes to poor wound healing in diabetes[J]. Cell Rep, 2024, 43(1): 113658.

[本文引用: 1]

ZHANG Q Z, CHEN S Y, GUO Y, et al. Phenylalanine diminishes M1 macrophage inflammation[J]. Sci China Life Sci, 2023, 66(12): 2862-2876.

[本文引用: 1]

ZHU H T, XING C, DOU X Q, et al. Chiral hydrogel accelerates re-epithelization in chronic wounds via mechanoregulation[J]. Adv Healthc Mater, 2022, 11(21): e2201032.

[本文引用: 1]

MIAO M Y, NIU Y W, XIE T, et al. Diabetes-impaired wound healing and altered macrophage activation: a possible pathophysiologic correlation[J]. Wound Repair Regen, 2012, 20(2): 203-213.

[本文引用: 1]

CHEN M, CHANG C, LEVIAN B, et al. Why are there so few FDA-approved therapeutics for wound healing?[J]. Int J Mol Sci, 2023, 24(20): 15109.

[本文引用: 1]

DA PORTO A, MIRANDA C, BROSOLO G, et al. Nutritional supplementation on wound healing in diabetic foot: what is known and what is new?[J]. World J Diabetes, 2022, 13(11): 940-948.

[本文引用: 1]

/