1 |
SWANTON C, MCGRANAHAN N, STARRETT G J, et al. APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity[J]. Cancer Discov, 2015, 5(7): 704-712.
|
2 |
ROBERTS S A, LAWRENCE M S, KLIMCZAK L J, et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers[J]. Nat Genet, 2013, 45(9): 970-976.
|
3 |
ALEXANDROV L B, NIK-ZAINAL S, WEDGE D C, et al. Signatures of mutational processes in human cancer[J]. Nature, 2013, 500(7463): 415-421.
|
4 |
KUONG K J, LOEB L A. APOBEC3B mutagenesis in cancer[J]. Nat Genet, 2013, 45(9): 964-965.
|
5 |
BURNS M B, LACKEY L, CARPENTER M A, et al. APOBEC3B is an enzymatic source of mutation in breast cancer[J]. Nature, 2013, 494(7437): 366-370.
|
6 |
CESCON D W, HAIBE-KAINS B, MAK T W. APOBEC3B expression in breast cancer reflects cellular proliferation, while a deletion polymorphism is associated with immune activation[J]. Proc Natl Acad Sci USA, 2015, 112(9): 2841-2846.
|
7 |
SOUSA M M L, KROKAN H E, SLUPPHAUG G. DNA-uracil and human pathology[J]. Mol Aspects Med, 2007, 28(3/4): 276-306.
|
8 |
VENKATESAN S, ROSENTHAL R, KANU N, et al. Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution[J]. Ann Oncol, 2018, 29(3): 563-572.
|
9 |
HOOPES J I, CORTEZ L M, MERTZ T M, et al. APOBEC3A and APOBEC3B preferentially deaminate the lagging strand template during DNA replication[J]. Cell Rep, 2016, 14(6): 1273-1282.
|
10 |
SEREBRENIK A A, STARRETT G J, LEENEN S, et al. The deaminase APOBEC3B triggers the death of cells lacking uracil DNA glycosylase[J]. Proc Natl Acad Sci USA, 2019, 116(44): 22158-22163.
|
11 |
SIEUWERTS A M, WILLIS S, BURNS M B, et al. Elevated APOBEC3B correlates with poor outcomes for estrogen-receptor-positive breast cancers[J]. Horm Cancer, 2014, 5(6): 405-413.
|
12 |
YAN S M, HE F, GAO B, et al. Increased APOBEC3B predicts worse outcomes in lung cancer: a comprehensive retrospective study[J]. J Cancer, 2016, 7(6): 618-625.
|
13 |
LAW E K, SIEUWERTS A M, LAPARA K, et al. The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer[J]. Sci Adv, 2016, 2(10): e1601737.
|
14 |
XU L, CHANG Y, AN H M, et al. High APOBEC3B expression is a predictor of recurrence in patients with low-risk clear cell renal cell carcinoma[J]. Urol Oncol, 2015, 33(8): 340.e1-340.e8.
|
15 |
SEREBRENIK A A, ARGYRIS P P, JARVIS M C, et al. The DNA cytosine deaminase APOBEC3B is a molecular determinant of platinum responsiveness in clear cell ovarian cancer[J]. Clin Cancer Res, 2020, 26(13): 3397-3407.
|
16 |
MCLAUGHLIN C C, WU X C, JEMAL A, et al. Incidence of noncutaneous melanomas in the US[J]. Cancer, 2005, 103(5): 1000-1007.
|
17 |
BLUM E S, YANG J, KOMATSUBARA K M, et al. Clinical management of uveal and conjunctival melanoma[J]. Oncology (Williston Park), 2016, 30(1): 29-32, 34-43, 48.
|
18 |
JAGER M J, SHIELDS C L, CEBULLA C M, et al. Uveal melanoma[J]. Nat Rev Dis Primers, 2020, 6(1): 24.
|
19 |
SALAMANGO D J, MCCANN J L, DEMIR Ö, et al. APOBEC3B nuclear localization requires two distinct N-terminal domain surfaces[J]. J Mol Biol, 2018, 430(17): 2695-2708.
|
20 |
TSUBOI M, YAMANE A, HORIGUCHI J, et al. APOBEC3B high expression status is associated with aggressive phenotype in Japanese breast cancers[J]. Breast Cancer, 2016, 23(5): 780-788.
|
21 |
XIA S Y, GU Y, ZHANG H J, et al. Immune inactivation by APOBEC3B enrichment predicts response to chemotherapy and survival in gastric cancer[J]. Oncoimmunology, 2021, 10(1): 1975386.
|
22 |
GARA S K, TYAGI M V, PATEL D T, et al. GATA3 and APOBEC3B are prognostic markers in adrenocortical carcinoma and APOBEC3B is directly transcriptionally regulated by GATA3[J]. Oncotarget, 2020, 11(36): 3354-3370.
|
23 |
HIRABAYASHI S, SHIRAKAWA K, HORISAWA Y, et al. APOBEC3B is preferentially expressed at the G2/M phase of cell cycle[J]. Biochem Biophys Res Commun, 2021, 546: 178-184.
|
24 |
NIKKILÄ J, KUMAR R, CAMPBELL J, et al. Elevated APOBEC3B expression drives a kataegic-like mutation signature and replication stress-related therapeutic vulnerabilities in p53-defective cells[J]. Br J Cancer, 2017, 117(1): 113-123.
|
25 |
CESCON D W, HAIBE-KAINS B. DNA replication stress: a source of APOBEC3B expression in breast cancer[J]. Genome Biol, 2016, 17(1): 202.
|
26 |
MACHERET M, HALAZONETIS T D. DNA replication stress as a hallmark of cancer[J]. Annu Rev Pathol, 2015, 10: 425-448.
|
27 |
BUISSON R, LAWRENCE M S, BENES C H, et al. APOBEC3A and APOBEC3B activities render cancer cells susceptible to ATR inhibition[J]. Cancer Res, 2017, 77(17): 4567-4578.
|
28 |
ASHLEY A K, SHRIVASTAV M, NIE J Y, et al. DNA-PK phosphorylation of RPA32 Ser4/Ser8 regulates replication stress checkpoint activation, fork restart, homologous recombination and mitotic catastrophe[J]. DNA Repair (Amst), 2014, 21: 131-139.
|
29 |
REAPER P M, GRIFFITHS M R, LONG J M, et al. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR[J]. Nat Chem Biol, 2011, 7(7): 428-430.
|
30 |
TOLEDO L I, MURGA M, ZUR R, et al. A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations[J]. Nat Struct Mol Biol, 2011, 18(6): 721-727.
|
31 |
KANU N, CERONE M A, GOH G, et al. DNA replication stress mediates APOBEC3 family mutagenesis in breast cancer[J]. Genome Biol, 2016, 17: 185.
|