1 |
Gravitz L. Skin[J]. Nature, 2018, 563(7732): S83.
|
2 |
Dainichi T, Kitoh A, Otsuka A, et al. The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis[J]. Nat Immunol, 2018, 19(12): 1286-1298.
|
3 |
Giovannacci I, Magnoni C, Vescovi P, et al. Which are the main fluorophores in skin and oral mucosa? a review with emphasis on clinical applications of tissue autofluorescence[J]. Arch Oral Biol, 2019, 105: 89-98.
|
4 |
Franco W, Gutierrez-Herrera E, Kollias N, et al. Review of applications of fluorescence excitation spectroscopy to dermatology[J]. Br J Dermatol, 2016, 174(3): 499-504.
|
5 |
Sticherling M. Psoriasis and autoimmunity[J]. Autoimmun Rev, 2016, 15(12): 1167-1170.
|
6 |
Rendon A, Schäkel K. Psoriasis pathogenesis and treatment[J]. Int J Mol Sci, 2019, 20(6): 1475.
|
7 |
Bissonnette R, Zeng H, McLean DI, et al. Psoriatic plaques exhibit red autofluorescence that is due to protoporphyrin Ⅸ[J]. J Invest Dermatol, 1998, 111(4): 586-591.
|
8 |
Wang B, Xu YT, Zhang L, et al. Protoporphyrin Ⅸ fluorescence as potential indicator of psoriasis severity and progression[J]. Photodiagnosis Photodyn Ther, 2017, 19: 304-307.
|
9 |
Nutten S. Atopic dermatitis: global epidemiology and risk factors[J]. Ann Nutr Metab, 2015, 66(): 8-16.
|
10 |
Bozek A, Zajac M, Krupka M. Atopic dermatitis and psoriasis as overlapping syndromes[J]. Mediators Inflamm, 2020, 2020: 7527859.
|
11 |
Barrett M, Luu M. Differential diagnosis of atopic dermatitis[J]. Immunol Allergy Clin North Am, 2017, 37(1): 11-34.
|
12 |
Yim JH, Jeong KH, Shin MK. Comparative study of skin autofluorescence expression in atopic dermatitis and psoriasis: a prospective in vivo study[J]. Skin Res Technol, 2017, 23(2): 169-175.
|
13 |
Agner T. Biomarkers in contact dermatitis[J]. Br J Dermatol, 2017, 176(6): 1434-1435.
|
14 |
Shin EJ, Gwak MJ, Jeong KH, et al. Lack of differentiation of allergic and irritant reactions by skin autofluorescence[J]. Contact Dermatitis, 2017, 76(5): 318-321.
|
15 |
Shin EJ, Seo JK, Lee EJ, et al. Diagnostic utility of skin autofluorescence when patch test results are doubtful[J]. Skin Res Technol, 2019, 25(1):96-99.
|
16 |
Rodrigues M, Kosaric N, Bonham CA, et al. Wound healing: a cellular perspective[J]. Physiol Rev, 2019, 99(1): 665-706.
|
17 |
Deka G, Wu WW, Kao FJ. In vivo wound healing diagnosis with second harmonic and fluorescence lifetime imaging[J]. J Biomed Opt, 2013, 18(6): 061222.
|
18 |
Wang Y, Gutierrez-Herrera E, Ortega-Martinez A, et al. UV fluorescence excitation imaging of healing of wounds in skin: evaluation of wound closure in organ culture model[J]. Lasers Surg Med, 2016, 48(7): 678-685.
|
19 |
Zhao HL, Zhang CP, Zhu H, et al. Autofluorescence of collagen fibres in scar[J]. Skin Res Technol, 2017, 23(4): 588-592.
|
20 |
Viktoriya A, Irina R, Anastasiia G, et al. Laser fluorescence spectroscopy in predicting the formation of a keloid scar: preliminary results and the role of lipopigments[J]. Biomed Opt Express, 2020, 11(4): 1742-1751.
|
21 |
Kohl E, Steinbauer J, Landthaler M, et al. Skin ageing[J]. J Eur Acad Dermatol Venereol, 2011, 25(8): 873-884.
|
22 |
Rittié L, Fisher GJ. Natural and sun-induced aging of human skin[J]. Cold Spring Harb Perspect Med, 2015, 5(1): a015370.
|
23 |
Kollias N, Gillies R, Moran M, et al. Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging[J]. J Invest Dermatol, 1998, 111(5): 776-780.
|
24 |
Na R, Stender IM, Henriksen M, et al. Autofluorescence of human skin is age-related after correction for skin pigmentation and redness[J]. J Invest Dermatol, 2001, 116(4): 536-540.
|
25 |
Gillies R, Zonios G, Anderson RR, et al. Fluorescence excitation spectroscopy provides information about human skin in vivo[J]. J Invest Dermatol, 2000, 115(4): 704-707.
|
26 |
Sandby-Møller J, Thieden E, Philipsen PA, et al. Skin autofluorescence as a biological UVR dosimeter[J]. Photodermatol Photoimmunol Photomed, 2004, 20(1): 33-40.
|
27 |
Togsverd-Bo K, Philipsen PA, Hædersdal M, et al. Skin autofluorescence reflects individual seasonal UV exposure, skin photodamage and skin cancer development in organ transplant recipients[J]. J Photochem Photobiol B, 2018, 178: 577-583.
|
28 |
Tyrrell J, Paterson C, Curnow A. Regression analysis of protoporphyrin Ⅸ measurements obtained during dermatological photodynamic therapy[J]. Cancers (Basel), 2019, 11(1): 72.
|
29 |
Na R, Stender IM, Wulf HC. Can autofluorescence demarcate basal cell carcinoma from normal skin? a comparison with protoporphyrin Ⅸ fluorescence[J]. Acta Derm Venereol, 2001, 81(4): 246-249.
|
30 |
Brancaleon L, Durkin AJ, Tu JH, et al. In vivo fluorescence spectroscopy of nonmelanoma skin cancer[J]. Photochem Photobiol, 2001, 73(2): 178-183.
|
31 |
Panjehpour M, Julius CE, Phan MN, et al. Laser-induced fluorescence spectroscopy for in vivo diagnosis of non-melanoma skin cancers[J]. Lasers Surg Med, 2002, 31(5): 367-373.
|
32 |
Maciel VH, Correr WR, Kurachi C, et al. Fluorescence spectroscopy as a tool to in vivo discrimination of distinctive skin disorders[J]. Photodiagnosis Photodyn Ther, 2017, 19: 45-50.
|
33 |
Lihachev A, Lihacova I, Plorina EV, et al. Differentiation of seborrheic keratosis from basal cell carcinoma, nevi and melanoma by RGB autofluorescence imaging[J]. Biomed Opt Express, 2018, 9(4): 1852-1858.
|
34 |
Wang S, Zhao JH, Lui H, et al. In vivo near-infrared autofluorescence imaging of pigmented skin lesions: methods, technical improvements and preliminary clinical results[J]. Skin Res Technol, 2013, 19(1): 20-26.
|
35 |
Tamošiūnas M, Plorina EV, Lange M, et al. Autofluorescence imaging for recurrence detection in skin cancer postoperative scars[J]. J Biophotonics, 2020, 13(3): e201900162.
|
36 |
Stenquist B, Ericson MB, Strandeberg C, et al. Bispectral fluorescence imaging of aggressive basal cell carcinoma combined with histopathological mapping: a preliminary study indicating a possible adjunct to Mohs micrographic surgery[J]. Br J Dermatol, 2006, 154(2): 305-309.
|
37 |
van der Beek N, de Leeuw J, Demmendal C, et al. PpⅨ fluorescence combined with auto-fluorescence is more accurate than PpⅨ fluorescence alone in fluorescence detection of non-melanoma skin cancer: an intra-patient direct comparison study[J]. Lasers Surg Med, 2012, 44(4): 271-276.
|
38 |
Bratchenko IA, Artemyev DN, Myakinin OO, et al. Combined Raman and autofluorescence ex vivo diagnostics of skin cancer in near-infrared and visible regions[J]. J Biomed Opt, 2017, 22(2): 27005.
|
39 |
Khristoforova YA, Bratchenko IA, Myakinin OO, et al. Portable spectroscopic system for in vivo skin neoplasms diagnostics by Raman and autofluorescence analysis[J]. J Biophotonics, 2019, 12(4): e201800400.
|
40 |
Meerwaldt R, Graaff R, Oomen PHN, et al. Simple non-invasive assessment of advanced glycation endproduct accumulation[J]. Diabetologia, 2004, 47(7): 1324-1330.
|
41 |
Da Moura Semedo C, Webb M, Waller H, et al. Skin autofluorescence, a non-invasive marker of advanced glycation end products: clinical relevance and limitations[J]. Postgrad Med J, 2017, 93(1099): 289-294.
|
42 |
Fokkens BT, van Waateringe RP, Mulder DJ, et al. Skin autofluorescence improves the Finnish Diabetes Risk Score in the detection of diabetes in a large population-based cohort: the lifelines cohort study[J]. Diabetes Metab, 2018, 44(5): 424-430.
|
43 |
Viramontes Hörner D, Taal MW. Skin autofluorescence: an emerging biomarker in persons with kidney disease[J]. Curr Opin Nephrol Hypertens, 2019, 28(6): 507-512.
|
44 |
Lavielle A, Rubin S, Boyer A, et al. Skin autofluorescence in acute kidney injury[J]. Crit Care, 2017, 21(1): 24.
|
45 |
Cavero-Redondo I, Soriano-Cano A, Álvarez-Bueno C, et al. Skin autofluorescence-indicated advanced glycation end products as predictors of cardiovascular and all-cause mortality in high-risk subjects: a systematic review and meta-analysis[J]. J Am Heart Assoc, 2018, 7(18): e009833.
|
46 |
Igase M, Ohara M, Igase K, et al. Skin autofluorescence examination as a diagnostic tool for mild cognitive impairment in healthy people[J]. J Alzheimers Dis, 2017, 55(4): 1481-1487.
|
47 |
van Waateringe RP, Mook-Kanamori MJ, Slagter SN, et al. The association between various smoking behaviors, cotinine biomarkers and skin autofluorescence, a marker for advanced glycation end product accumulation[J]. PLoS One, 2017, 12(6): e0179330.
|
48 |
Calin MA, Parasca SV, Savastru R, et al. Optical techniques for the noninvasive diagnosis of skin cancer[J]. J Cancer Res Clin Oncol, 2013, 139(7): 1083-1104.
|
49 |
Morvová M Jr, Jeczko P, Šikurová L. Gender differences in the fluorescence of human skin in young healthy adults[J]. Skin Res Technol, 2018, 24(4): 599-605.
|
50 |
Sandby-Møller J, Poulsen T, Wulf HC. Influence of epidermal thickness, pigmentation and redness on skin autofluorescence[J]. Photochem Photobiol, 2003, 77(6): 616-620.
|
51 |
Papaioannou TG, Alexandraki KI, Karamanou M, et al. Association of skin autofluorescence with arterial properties: a closer look at AGE Reader and EndoPAT 2000 commercial devices[J]. Exp Gerontol, 2017, 98: 207-208.
|