1 |
Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance[J]. Nat Rev Microbiol, 2014, 12(1): 35-48.
|
2 |
Arenz S, Wilson DN. Bacterial protein synthesis as a target for antibiotic inhibition[J]. Cold Spring Harb Perspect Med, 2016, 6(9): a025361.
|
3 |
Walsh C. Where will new antibiotics come from?[J] Nat Rev Microbiol, 2003, 1(1): 65-70.
|
4 |
Lu M, Symersky J, Radchenko M, et al. Structures of a Na+-coupled, substrate-bound MATE multidrug transporter [J]. Proc Natl Acad Sci U S A, 2013, 110(6): 2099-2104.
|
5 |
Doi Y, Wachino JI, Arakawa Y. Aminoglycoside resistance: the emergence of acquired 16S ribosomal RNA methyltransferases[J]. Infect Dis Clin North Am, 2016, 30(2): 523-537.
|
6 |
Weisblum B. Erythromycin resistance by ribosome modification[J]. Antimicrob Agents Chemother, 1995, 39(3): 577-585.
|
7 |
Traub P, Nomura M. Streptomycin resistance mutation in Escherichia coli: altered ribosomal protein[J]. Science, 1968, 160(3824): 198-199.
|
8 |
Gregory ST, Cate JH, Dahlberg AE. Streptomycin-resistant and streptomycin-dependent mutants of the extreme thermophile Thermus thermophilus[J]. J Mol Biol2001, 309(2): 333-338.
|
9 |
Ren J, Sang Y, Tan Y, et al. Acetylation of lysine 201 inhibits the DNA-binding ability of PhoP to regulate Salmonella virulence[J]. PLoS Pathog, 2016, 12(3): e1005458.
|
10 |
Ren J, Sang Y, Ni J, et al. Acetylation regulates survival of Salmonella enterica Serovar Typhimurium under acid stress[J]. Appl Environ Microbiol, 2015, 81(17): 5675-5682.
|
11 |
Zhang K, Zheng S, Yang JS, et al. Comprehensive profiling of protein lysine acetylation in Escherichia coli[J]. J Proteome Res, 2013, 12(2): 844-851.
|
12 |
Starai VJ, Escalante-Semerena JC. Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica[J]. J Mol Biol, 2004, 340(5): 1005-1012.
|
13 |
Verdin E, Ott M. Acetylphosphate: a novel link between lysine acetylation and intermediary metabolism in bacteria [J]. Mol Cell, 2013, 51(2): 132-134.
|
14 |
Kuhn ML, Zemaitaitis B, Hu LI, et al. Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation[J]. PLoS One, 2014, 9(4) :e94816.
|
15 |
AbouElfetouh A, Kuhn ML, Hu LI, et al. The E. coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites[J]. Microbiologyopen, 2015, 4(1): 66-83.
|
16 |
Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances[J]. Nat Protoc, 2008, 3(2): 163-175.
|
17 |
Witzky A, Tollerson R 2nd, Ibba M. Translational control of antibiotic resistance [J].Open Biol, 2019, 9(7): 190051.
|
18 |
Björkman J, Samuelsson P, Andersson DI, et al. Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium[J]. Mol Microbiol, 1999, 31(1): 53-58.
|
19 |
Wilson DN. The A-Z of bacterial translation inhibitors[J]. Crit Rev Biochem Mol Biol, 2009, 44(6): 393-433.
|
20 |
Kamita M, Kimura Y, Ino Y, et al. Nα-acetylation of yeast ribosomal proteins and its effect on protein synthesis[J]. J Proteomics, 2011, 74(4): 431-441.
|
21 |
Kehrenberg C, Schwarz S. Mutations in 16S rRNA and ribosomal protein S5 associated with high-level spectinomycin resistance in Pasteurella multocida[J]. Antimicrob Agents Chemother, 2007, 51(6): 2244-2246.
|
22 |
Björkman J, Hughes D, Andersson DI. Virulence of antibiotic-resistant Salmonella typhimurium[J]. Proc Natl Acad Sci U S A, 1998, 95(7): 3949-3953.
|