1 |
Tasaki S, Cho T, Nagao JI, et al. Th17 cells differentiated with mycelial membranes of Candida albicans prevent oral candidiasis[J]. FEMS Yeast Res, 2018, 18(3).
|
2 |
Bongomin F, Gago S, Oladele RO, et al. Global and multi-national prevalence of fungal diseases-estimate precision[J]. J Fungi (Basel), 2017, 3(4): E57.
|
3 |
Jabra-Rizk MA, Kong EF, Tsui C, et al. Candida albicans pathogenesis: fitting within the host-microbe damage response framework[J]. Infect Immun, 2016, 84(10): 2724-2739.
|
4 |
Gabrielli E, Sabbatini S, Roselletti E, et al. In vivo induction of neutrophil chemotaxis by secretory aspartyl proteinases of Candida albicans[J]. Virulence, 2016, 7(7): 819-825.
|
5 |
Yano J, Palmer GE, Eberle KE, et al. Vaginal epithelial cell-derived S100 alarmins induced by Candida albicansvia pattern recognition receptor interactions are sufficient but not necessary for the acute neutrophil response during experimental vaginal candidiasis[J]. Infect Immun, 2014, 82(2): 783-792.
|
6 |
Poulain D. Candida albicans, plasticity and pathogenesis[J]. Crit Rev Microbiol, 2015, 41(2): 208-217.
|
7 |
Pradhan A, Avelar GM, Bain JM, et al. Hypoxia promotes immune evasion by triggering β-glucan masking on the Candida albicans cell surface via mitochondrial and cAMP-protein kinase A signaling[J]. mBio, 2018, 9(6): e01318-18.
|
8 |
Shepherd MG. Cell envelope of Candida albicans[J]. Crit Rev Microbiol, 1987, 15(1): 7-25.
|
9 |
Rigamonti M, Groppi S, Belotti F, et al. Hypotonic stress-induced calcium signaling in Saccharomyces cerevisiae involves TRP-like transporters on the endoplasmic reticulum membrane[J]. Cell Calcium, 2015, 57(2): 57-68.
|
10 |
Ishida Y, Ohta K, Naruse T, et al. Candida albicans β-glucan-containing particles increase HO-1 expression in oral keratinocytes via a reactive oxygen species/p38 mitogen-activated protein kinase/Nrf2 pathway[J]. Infect Immun, 2018, 86(4): e00575-17.
|
11 |
Canabarro A, Valle C, Farias MR, et al. Association of subgingival colonization of Candida albicans and other yeasts with severity of chronic periodontitis[J]. J Periodontal Res, 2013, 48(4): 428-432.
|
12 |
Lopes JP, Stylianou M, Backman E, et al. Evasion of immune surveillance in low oxygen environments enhances Candida albicans virulence[J]. mBio, 2018, 9(6): e02120-18.
|
13 |
Lowman DW, Greene RR, Bearden DW, et al. Novel structural features in Candida albicans hyphal glucan provide a basis for differential innate immune recognition of hyphae versus yeast[J]. J Biol Chem, 2014, 289(6):3432-3443.
|
14 |
Ferwerda B, Ferwerda G, Plantinga TS, et al. Human dectin-1 deficiency and mucocutaneous fungal infections[J]. N Engl J Med, 2009,361(18):1760-1767.
|
15 |
Gantner BN, Simmons RM, Underhill DM. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments[J]. EMBO J, 2005,24(6):1277-1286.
|
16 |
Wheeler RT, Kombe D, Agarwala SD, et al. Dynamic, morphotype-specific Candida albicans β-glucan exposure during infection and drug treatment[J]. PLoS Pathog, 2008, 4(12): e1000227.
|
17 |
Gow NA, Netea MG, Munro CA, et al. Immune recognition of Candida albicans β-glucan by dectin-1[J]. J Infect Dis, 2007, 196(10): 1565-1571.
|
18 |
Klippel N, Cui SN, Groebe L, et al. Deletion of the Candida albicans histidine kinase gene CHK1 improves recognition by phagocytes through an increased exposure of cell wall β-1,3-glucans[J]. Microbiology, 2010, 156(11): 3432-3444.
|
19 |
Marakalala MJ, Vautier S, Potrykus J, et al. Differential adaptation of Candida albicansin vivo modulates immune recognition by dectin-1[J]. PLoS Pathog, 2013, 9(4): e1003315.
|
20 |
Denning DW. Echinocandin antifungal drugs[J]. Lancet, 2003, 362(9390): 1142-1151.
|
21 |
Liu NN, Acosta-Zaldívar M, Qi WJ, et al. Phosphoric metabolites link phosphate import and polysaccharide biosynthesis for Candida albicans cell wall maintenance[J]. mBio, 2020, 11(2): e03225-19.
|
22 |
Cambi A, Netea MG, Mora-Montes HM, et al. Dendritic cell interaction with Candida albicans critically depends on N-linked mannan[J]. J Biol Chem, 2008, 283(29): 20590-20599.
|
23 |
de Groot PW, de Boer AD, Cunningham J, et al. Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins[J]. Eukaryot Cell, 2004, 3(4): 955-965.
|
24 |
Richard M, de Groot P, Courtin O, et al. GPI7 affects cell-wall protein anchorage in Saccharomyces cerevisiae and Candida albicans[J]. Microbiology, 2002, 148(7): 2125-2133.
|
25 |
Klis FM, Sosinska GJ, de Groot PW, et al. Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence[J]. FEMS Yeast Res, 2009, 9(7): 1013-1028.
|
26 |
Bartkeviciūte D, Sasnauskas K. Disruption of the MNN10 gene enhances protein secretion in Kluyveromyces lactis and Saccharomyces cerevisiae[J]. FEMS Yeast Res, 2004, 4(8): 833-840.
|
27 |
Zhang SQ, Zou Z, Shen H, et al. Mnn10 maintains pathogenicity in Candida albicans by extending α-1, 6-mannose backbone to evade host dectin-1 mediated antifungal immunity[J]. PLoS Pathog, 2016, 12(5): e1005617.
|
28 |
Lin J, Wester MJ, Graus MS, et al. Nanoscopic cell-wall architecture of an immunogenic ligand in Candida albicans during antifungal drug treatment[J]. Mol Biol Cell, 2016, 27(6): 1002-1014.
|
29 |
Graus MS, Wester MJ, Lowman DW, et al. Mannan molecular substructures control nanoscale glucan exposure in Candida[J]. Cell Rep, 2018, 24(9): 2432-2442.e5.
|
30 |
Bain JM, Louw J, Lewis LE, et al. Candida albicans hypha formation and mannan masking of β-glucan inhibit macrophage phagosome maturation[J]. mBio, 2014, 5(6): e01874.
|
31 |
Dutton LC, Nobbs AH, Jepson K, et al. O-mannosylation in Candida albicans enables development of interkingdom biofilm communities[J]. mBio, 2014, 5(2): e00911.
|
32 |
Munro CA, Gow NA. Chitin synthesis in human pathogenic fungi[J]. Med Mycol, 2001, 39(): 41-53.
|
33 |
Kapteyn JC, Hoyer LL, Hecht JE, et al. The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants[J]. Mol Microbiol, 2000, 35(3): 601-611.
|
34 |
Hasim S, Allison DP, Retterer ST, et al. β-(1, 3)-glucan unmasking in some Candida albicans mutants correlates with increases in cell wall surface roughness and decreases in cell wall elasticity[J]. Infect Immun, 2017, 85(1): e00601-16.
|
35 |
Cabib E. Two novel techniques for determination of polysaccharide cross-links show that Crh1p and Crh2p attach chitin to both β(1-6)- and β(1-3)glucan in the Saccharomyces cerevisiae cell wall[J]. Eukaryot Cell, 2009, 8(11): 1626-1636.
|
36 |
Ene IV, Heilmann CJ, Sorgo AG, et al. Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans[J]. Proteomics, 2012, 12(21): 3164-3179.
|
37 |
Cantarel BL, Coutinho PM, Rancurel C, et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics[J]. Nucleic Acids Res, 2009, 37(database issue): D233-D238.
|
38 |
Munro CA, Selvaggini S, de Bruijn I, et al. The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans[J]. Mol Microbiol, 2007, 63(5): 1399-1413.
|
39 |
Cottier F, Sherrington S, Cockerill S, et al. Remasking of Candida albicans β-glucan in response to environmental pH is regulated by quorum sensing[J]. mBio, 2019, 10(5): e02347-19.
|
40 |
Swidsinski A, Guschin A, Tang Q, et al. Vulvovaginal candidiasis: histologic lesions are primarily polymicrobial and invasive and do not contain biofilms[J]. Am J Obstet Gynecol, 2019, 220(1): 91.e1-91.e8.
|
41 |
Heilmann CJ, Sorgo AG, Mohammadi S, et al. Surface stress induces a conserved cell wall stress response in the pathogenic fungus Candida albicans[J]. Eukaryot Cell, 2013, 12(2): 254-264.
|
42 |
Hardison SE, Brown GD. C-type lectin receptors orchestrate antifungal immunity[J]. Nat Immunol, 2012,13(9): 817-822.
|
43 |
Wagener J, MacCallum DM, Brown GD, et al. Candida albicans chitin increases arginase-1 activity in human macrophages, with an impact on macrophage antimicrobial functions[J]. mBio, 2017, 8(1): e01820-16.
|
44 |
Latgé JP. Tasting the fungal cell wall[J]. Cell Microbiol, 2010, 12(7): 863-872.
|
45 |
Rocha MC, Fabri JH, Franco de Godoy K, et al. Aspergillus fumigatus MADS-box transcription factor rlmA is required for regulation of the cell wall integrity and virulence[J]. G3 (Bethesda), 2016, 6(9): 2983-3002.
|
46 |
Román E, Arana DM, Nombela C, et al. MAP kinase pathways as regulators of fungal virulence[J]. Trends Microbiol, 2007, 15(4): 181-190.
|
47 |
Navarro-García F, Eisman B, Fiuza SM, et al. The MAP kinase Mkc1p is activated under different stress conditions in Candida albicans[J]. Microbiology (Reading), 2005, 151(Pt 8): 2737-2749.
|
48 |
Liu NN, Uppuluri P, Broggi A, et al. Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence[J]. PLoS Pathog, 2018, 14(7): e1007076.
|
49 |
Enjalbert B, Smith DA, Cornell MJ, et al. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans[J]. Mol Biol Cell, 2006, 17(2): 1018-1032.
|
50 |
Galán-Díez M, Arana DM, Serrano-Gómez D, et al. Candida albicans β-glucan exposure is controlled by the fungal CEK1-mediated mitogen-activated protein kinase pathway that modulates immune responses triggered through dectin-1[J]. Infect Immun, 2010,78(4): 1426-1436.
|