1 |
HUANG C L, WANG Y M, LI X W, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497-506.
|
2 |
EASTIN C, EASTIN T. Clinical characteristics of coronavirus disease 2019 in China[J]. J Emerg Med, 2020, 58(4): 711-712.
|
3 |
CHEN N S, ZHOU M, DONG X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study[J]. Lancet, 2020, 395(10223): 507-513.
|
4 |
WANG D W, HU B, HU C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China[J]. JAMA, 2020, 323(11): 1061-1069.
|
5 |
YAN C H, FARAJI F, PRAJAPATI D P, et al. Association of chemosensory dysfunction and COVID-19 in patients presenting with influenza-like symptoms[J]. Int Forum Allergy Rhinol, 2020, 10(7): 806-813.
|
6 |
KUANG S H, CHARGÉ S B, SEALE P, et al. Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis[J]. J Cell Biol, 2006, 172(1): 103-113.
|
7 |
RELAIX F, MONTARRAS D, ZAFFRAN S, et al. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells[J]. J Cell Biol, 2006, 172(1): 91-102.
|
8 |
SAITO H, KUBOTA M, ROBERTS RW, et al. RTP family members induce functional expression of mammalian odorant receptors[J]. Cell, 2004, 119(5): 679-691.
|
9 |
于腾. RTP1S与RTP2在辅助嗅觉受体功能性表达的过程中功能具有多样性[D]. 上海: 上海交通大学, 2017.
|
|
YU T. RTP1S and RTP2 have diverse functions in assisting the functional expression of olfactory receptors[D]. Shanghai: Shanghai Jiao Tong University, 2017.
|
10 |
SONG J, MURAKAMI H, TSUTSUI H, et al. Genomic organization and expression of a human gene for myc-associated zinc finger protein (MAZ)[J]. J Biol Chem, 1998, 273(32): 20603-20614.
|
11 |
RAY A, RAY B K. Isolation and functional characterization of cDNA of serum amyloid A-activating factor that binds to the serum amyloid A promoter[J]. Mol Cell Biol, 1998, 18(12): 7327-7335.
|
12 |
RAY A, RAY B K. A novel Cis-acting element is essential for cytokine-mediated transcriptional induction of the serum amyloid A gene in nonhepatic cells[J]. Mol Cell Biol, 1996, 16(4): 1584-1594.
|
13 |
RAY A, DHAR S, RAY B K. Control of VEGF expression in triple-negative breast carcinoma cells by suppression of SAF-1 transcription factor activity[J]. Mol Cancer Res, 2011, 9(8): 1030-1041.
|
14 |
WANG X, SOUTHARD R C, ALLRED C D, et al. MAZ drives tumor-specific expression of PPAR gamma 1 in breast cancer cells[J]. Breast Cancer Res Treat, 2008, 111(1): 103-111.
|
15 |
JIAO L, LI Y, SHEN D, et al. The prostate cancer-up-regulated Myc-associated zinc-finger protein (MAZ) modulates proliferation and metastasis through reciprocal regulation of androgen receptor[J]. Med Oncol, 2013, 30(2): 570.
|
16 |
毛建国. MAZ介导的自噬抑制在鼻咽癌转移中的作用和分子机制研究[D]. 西安: 第四军医大学, 2017.
|
|
MAO J G. Role and molecular mechanism of MAZ-mediated autophagy inhibition in nasopharyngeal carcinoma metastasis[D]. Xi′an: Fourth Military Medical University, 2017.
|
17 |
JIA C M, TIAN Y Y, QUAN L N, et al. miR-26b-5p suppresses proliferation and promotes apoptosis in multiple myeloma cells by targeting JAG1[J]. Pathol Res Pract, 2018, 214(9): 1388-1394.
|
18 |
FAN F, LU J J, YU W L, et al. microRNA-26b-5p regulates cell proliferation, invasion and metastasis in human intrahepatic cholangiocarcinoma by targeting S100A7[J]. Oncol Lett, 2018, 15(1): 386-392.
|
19 |
TANG C M, ZHANG M, HUANG L, et al. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts[J]. Sci Rep, 2017, 7: 40342.
|
20 |
谢蒙. Hsa-miR-26b-5p在硬皮病中的生物信息学分析和功能研究[D]. 武汉: 华中科技大学, 2019.
|
|
XIE M. Bioinformatics analysis and functional study of HSA-Mir-26b-5p in scleroderma [D]. Wuhan: Huazhong University of Science and Technology, 2019.
|
21 |
UniProt.UniProtKB-Q14332(FZD2_HUMAN)[EB/OL].(2021.7.12)[2021.7.12].http://www.uniprot.org/uniprot/Q14332#function.
|
22 |
董少婷. TRIB3基因的研究进展[J]. 中国基层医药, 2016, 23(4): 625-627.
|
|
DONG S T. Research progress of TRIB3 gene[J]. China Prim Med, 2016, 23(4):625-627.
|
23 |
YOKOYAMA T, NAKAMURA T. Tribbles in disease: signaling pathways important for cellular function and neoplastic transformation[J]. Cancer Sci, 2011, 102(6): 1115-1122.
|
24 |
UniProt.UniProtKB-O15075(DCLK1_HUMAN)[EB/OL].(2021.7.12)[2021.7.12].http://www.uniprot.org/uniprot/O15075#function.
|
25 |
SIDDHARTA A, PFAENDER S, VIELLE NJ, et al. Virucidal activity of World Health Organization-recommended formulations against enveloped viruses, including zika, Ebola, and emerging coronaviruses[J]. J Infect Dis, 2017, 215(6): 902-906.
|
26 |
BARR T, HELMS C, GRANT K, et al. Opposing effects of alcohol on the immune system[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2016, 65: 242-251.
|
27 |
SZABO G, SAHA B. Alcohol′s effect on host defense[J]. Alcohol Res, 2015, 37(2): 159-170.
|
28 |
THE LANCET GASTROENTEROLOGY & HEPATOLOGY. Drinking alone: covid-19, lockdown, and alcohol-related harm[J]. Lancet Gastroenterol Hepatol, 2020, 5(7): 625.
|
29 |
UniProt.UniProtKB-A5X5Y0(5HT3E_HUMAN)[EB/OL].(2021.7.12)[2021.7.12].http://www.uniprot.org/uniprot/O15075#function.
|
30 |
GeneCards.CHRNB2-Gene[EB/OL].(2021.7.12) [2021.7.12].https://www.genecards.org/cgi-bin/carddisp.pl?gene=CHRNB2#function.
|
31 |
GeneCards.KCNJ9-Gene[EB/OL].(2021.7.12) [2021.7.12].https://www.genecards.org/cgi-bin/carddisp.pl?gene=KCNJ9#function.
|