1 |
HODSON R. Inflammatory bowel disease[J]. Nature, 2016, 540(7634): S97.
|
2 |
MOZDIAK E, O′MALLEY J, ARASARADNAM R. Inflammatory bowel disease[J]. BMJ, 2015, 351: h4416.
|
3 |
BEN-HORIN S, KOPYLOV U, CHOWERS Y. Optimizing anti-TNF treatments in inflammatory bowel disease[J]. Autoimmun Rev, 2014, 13(1): 24-30.
|
4 |
NIELSEN O H. New strategies for treatment of inflammatory bowel disease[J]. Front Med, 2014, 1: 3.
|
5 |
KAMBA A, LEE I A, MIZOGUCHI E. Potential association between TLR4 and chitinase 3-like 1 (CHI3L1/YKL-40) signaling on colonic epithelial cells in inflammatory bowel disease and colitis-associated cancer[J]. Curr Mol Med, 2013, 13(7): 1110-1121.
|
6 |
RENDRA E, RIABOV V, MOSSEL D M, et al. Reactive oxygen species (ROS) in macrophage activation and function in diabetes[J]. Immunobiology, 2019, 224(2): 242-253.
|
7 |
NI D L, WEI H, CHEN W Y, et al. Ceria nanoparticles meet hepatic ischemia-reperfusion injury: the perfect imperfection[J]. Adv Mater, 2019, 31(40): e1902956.
|
8 |
ZENG F, WU Y W, LI X W, et al. Custom-made ceria nanoparticles show a neuroprotective effect by modulating phenotypic polarization of the microglia[J]. Angew Chem Int Ed Engl, 2018, 57(20): 5808-5812.
|
9 |
KWON H J, KIM D, SEO K, et al. Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson's disease[J]. Angew Chem Int Ed Engl, 2018, 57(30): 9408-9412.
|
10 |
SUN Y, SUN X L, LI X, et al. A versatile nanocomposite based on nanoceria for antibacterial enhancement and protection from aPDT-aggravated inflammation via modulation of macrophage polarization[J]. Biomaterials, 2021, 268: 120614.
|
11 |
WANG M L, ZENG F, NING F L, et al. Ceria nanoparticles ameliorate renal fibrosis by modulating the balance between oxidative phosphorylation and aerobic glycolysis[J]. J Nanobiotechnol, 2022, 20(1): 3.
|
12 |
PAPAMICHAEL K, GILS A, RUTGEERTS P, et al. Role for therapeutic drug monitoring during induction therapy with TNF antagonists in IBD: evolution in the definition and management of primary nonresponse[J]. Inflamm Bowel Dis, 2015, 21(1): 182-197.
|
13 |
MIAO X Y, LENG X F, ZHANG Q. The current state of nanoparticle-induced macrophage polarization and reprogramming research[J]. Int J Mol Sci, 2017, 18(2): 336.
|
14 |
SHAPOURI-MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440.
|
15 |
LIU H, DASGUPTA S, FU Y, et al. Subsets of mononuclear phagocytes are enriched in the inflamed colons of patients with IBD[J]. BMC Immunol, 2019, 20(1): 42.
|
16 |
PEREIRA C, GRÁCIO D, TEIXEIRA J P, et al. Oxidative stress and DNA damage: implications in inflammatory bowel disease[J]. Inflamm Bowel Dis, 2015, 21(10): 2403-2417.
|
17 |
ORÓ D, YUDINA T, FERNÁNDEZ-VARO G, et al. Cerium oxide nanoparticles reduce steatosis, portal hypertension and display anti-inflammatory properties in rats with liver fibrosis[J]. J Hepatol, 2016, 64(3): 691-698.
|
18 |
KHURANA A, TEKULA S, GODUGU C. Nanoceria suppresses multiple low doses of streptozotocin-induced type 1 diabetes by inhibition of Nrf2/NF-κB pathway and reduction of apoptosis[J]. Nanomedicine, 2018, 13(15): 1905-1922.
|