上海交通大学学报(医学版) ›› 2024, Vol. 44 ›› Issue (7): 915-921.doi: 10.3969/j.issn.1674-8115.2024.07.013
• 综述 • 上一篇
收稿日期:
2024-03-11
接受日期:
2024-04-10
出版日期:
2024-07-28
发布日期:
2024-07-28
通讯作者:
冯方
E-mail:lsq0617@sjtu.edu.cn;2305120@tongji.edu.cn
作者简介:
刘诗琪(1999—),女,硕士生;电子信箱:lsq0617@sjtu.edu.cn。
基金资助:
LIU Shiqi1(), WANG Hui1, FENG Fang2(
)
Received:
2024-03-11
Accepted:
2024-04-10
Online:
2024-07-28
Published:
2024-07-28
Contact:
FENG Fang
E-mail:lsq0617@sjtu.edu.cn;2305120@tongji.edu.cn
Supported by:
摘要:
甲状腺癌是内分泌系统最常见的恶性肿瘤,其中分化型甲状腺癌(differentiated thyroid carcinoma,DTC)占90%以上。多数DTC患者经过系统治疗后预后良好,但少数患者肿瘤原发灶或转移灶出现失分化现象,进展为放射性碘难治性DTC(radioiodine-refractory DTC,RAIR-DTC),预后明显变差,是甲状腺癌致死的主要原因。钠碘转运体(sodium iodide symporter,NIS)的表达和功能异常,是导致甲状腺癌碘-131治疗抵抗的主要原因,其发生受遗传学改变、表观遗传学改变、肿瘤微环境作用、自噬作用等多因素影响。遗传学改变如BRAF基因的V600E位点突变、RET/PTC基因重排等导致致癌信号通路的激活,直接或间接地影响NIS的表达及其在细胞膜上的正常定位。表观遗传学调控特定基因的表达模式,调节NIS的表达水平,进而影响甲状腺细胞的碘摄取功能。肿瘤微环境中的免疫细胞、细胞因子和细胞外基质等成分也可能通过降低NIS的表达水平和/或干扰其在细胞膜上的正常功能导致细胞碘摄取障碍。此外,自噬作为一种细胞内部的代谢调节机制,也可以调节NIS的表达及其在细胞内的分布,从而影响碘的摄取和碘-131治疗的敏感性。通过综述以上因素在甲状腺癌失分化中的作用机制,可以更全面地理解RAIR-DTC的发生和发展过程,有助于探寻新的治疗靶点,改善预后,并为患者提供更有效的个体化治疗策略。
中图分类号:
刘诗琪, 王辉, 冯方. 甲状腺癌碘-131治疗抵抗发生的分子机制研究进展[J]. 上海交通大学学报(医学版), 2024, 44(7): 915-921.
LIU Shiqi, WANG Hui, FENG Fang. Advances in molecular mechanisms of iodine-131 therapy resistance in thyroid carcinoma[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 915-921.
1 | MILLER K D, FIDLER-BENAOUDIA M, KEEGAN T H, et al. Cancer statistics for adolescents and young adults, 2020[J]. CA Cancer J Clin, 2020, 70(6): 443-459. |
2 | MIRANDA-FILHO A, LORTET-TIEULENT J, BRAY F, et al. Thyroid cancer incidence trends by histology in 25 countries: a population-based study[J]. Lancet Diabetes Endocrinol, 2021, 9(4): 225-234. |
3 | DAVIES L, HOANG J K. Thyroid cancer in the USA: current trends and outstanding questions[J]. Lancet Diabetes Endocrinol, 2021, 9(1): 11-12. |
4 | DE LA FOUCHARDIERE C, ALGHUZLAN A, BARDET S, et al. The medical treatment of radioiodine-refractory differentiated thyroid cancers in 2019. A TUTHYREF® network review[J]. Bull Cancer, 2019, 106(9): 812-819. |
5 | OH J M, AHN B C. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS[J]. Theranostics, 2021, 11(13): 6251-6277. |
6 | SCHEFFEL R S, DORA J M, MAIA A L. BRAF mutations in thyroid cancer[J]. Curr Opin Oncol, 2022, 34(1): 9-18. |
7 | SCHLUMBERGER M, LEBOULLEUX S. Current practice in patients with differentiated thyroid cancer[J]. Nat Rev Endocrinol, 2021, 17(3): 176-188. |
8 | YU P C, QU N, ZHU R, et al. TERT accelerates BRAF mutant-induced thyroid cancer dedifferentiation and progression by regulating ribosome biogenesis[J]. Sci Adv, 2023, 9(35): eadg7125. |
9 | FAN T B, ZHU W B, KONG M, et al. The significance of PAX8-PPARγ expression in thyroid cancer and the application of a PAX8-PPARγ-targeted ultrasound contrast agent in the early diagnosis of thyroid cancer[J]. Contrast Media Mol Imaging, 2022, 2022: 3265342. |
10 | MANZELLA L, STELLA S, PENNISI M S, et al. New insights in thyroid cancer and p53 family proteins[J]. Int J Mol Sci, 2017, 18(6): 1325. |
11 | DUNN L A, SHERMAN E J, BAXI S S, et al. Vemurafenib redifferentiation of BRAF mutant, RAI-refractory thyroid cancers[J]. J Clin Endocrinol Metab, 2019, 104(5): 1417-1428. |
12 | HAYES D N, LUCAS A S, TANVETYANON T, et al. Phase Ⅱ efficacy and pharmacogenomic study of Selumetinib (AZD6244; ARRY-142886) in iodine-131 refractory papillary thyroid carcinoma with or without follicular elements[J]. Clin Cancer Res, 2012, 18(7): 2056-2065. |
13 | HO A L, GREWAL R K, LEBOEUF R, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer[J]. N Engl J Med, 2013, 368(7): 623-632. |
14 | HO A L, DEDECJUS M, WIRTH L J, et al. Selumetinib plus adjuvant radioactive iodine in patients with high-risk differentiated thyroid cancer: a phase Ⅲ, randomized, placebo-controlled trial (ASTRA)[J]. J Clin Oncol, 2022, 40(17): 1870-1878. |
15 | AASHIQ M, SILVERMAN D A, NA′ARA S, et al. Radioiodine-refractory thyroid cancer: molecular basis of redifferentiation therapies, management, and novel therapies[J]. Cancers, 2019, 11(9): 1382. |
16 | DOGHISH A S, EL-MAHDY H A, ISMAIL A, et al. Significance of miRNAs on the thyroid cancer progression and resistance to treatment with special attention to the role of cross-talk between signaling pathways[J]. Pathol Res Pract, 2023, 243: 154371. |
17 | PEKOVA B, SYKOROVA V, MASTNIKOVA K, et al. NTRK fusion genes in thyroid carcinomas: clinicopathological characteristics and their impacts on prognosis[J]. Cancers, 2021, 13(8): 1932. |
18 | NIKITSKI A V, CONDELLO V, DIVAKARAN S S, et al. Inhibition of ALK-signaling overcomes STRN-ALK-induced downregulation of the sodium iodine symporter and restores radioiodine uptake in thyroid cells[J]. Thyroid, 2023, 33(4): 464-473. |
19 | CHEN X, LI M Z, ZHOU H W, et al. MiR-132 targets FOXA1 and exerts tumor-suppressing functions in thyroid cancer[J]. Oncol Res, 2019, 27(4): 431-437. |
20 | MA Y H, ZHANG Q, ZHANG K X, et al. NTRK fusions in thyroid cancer: pathology and clinical aspects[J]. Crit Rev Oncol Hematol, 2023, 184: 103957. |
21 | GROUSSIN L, CLERC J, HUILLARD O. Larotrectinib-enhanced radioactive iodine uptake in advanced thyroid cancer[J]. N Engl J Med, 2020, 383(17): 1686-1687. |
22 | DOEBELE R C, DRILON A, PAZ-ARES L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials[J]. Lancet Oncol, 2020, 21(2): 271-282. |
23 | HWANG E, DOOLITTLE W K L, ZHU Y J, et al. Thyroid hormone receptor α1: a novel regulator of thyroid cancer cell differentiation[J]. Oncogene, 2023, 42(41): 3075-3086. |
24 | FERNÁNDEZ L P, LÓPEZ-MÁRQUEZ A, SANTISTEBAN P. Thyroid transcription factors in development, differentiation and disease[J]. Nat Rev Endocrinol, 2015, 11(1): 29-42. |
25 | FU H, CHENG L X, JIN Y C, et al. MAPK inhibitors enhance HDAC inhibitor-induced redifferentiation in papillary thyroid cancer cells harboring BRAF V600E: an in vitro study[J]. Mol Ther Oncolytics, 2019, 12: 235-245. |
26 | READ M L, LEWY G D, FONG J C W, et al. Proto-oncogene PBF/PTTG1IP regulates thyroid cell growth and represses radioiodide treatment[J]. Cancer Res, 2011, 71(19): 6153-6164. |
27 | HO P T B, CLARK I M, LE L T T. MicroRNA-based diagnosis and therapy[J]. Int J Mol Sci, 2022, 23(13): 7167. |
28 | 李勇, 郭敏, 康英英. MicroRNA在甲状腺癌中的研究进展[J]. 中华全科医学, 2022, 20(2): 298-301, 351. |
LI Y, GUO M, KANG Y Y. Research progress of microRNA in thyroid cancer[J]. Chinese Journal of General Practice, 2022, 20(2): 298-301, 351. | |
29 | KONDROTIENĖ A, DAUKŠA A, PAMEDYTYTĖ D, et al. Papillary thyroid carcinoma tissue miR-146b, -21, -221, -222, -181b expression in relation with clinicopathological features[J]. Diagnostics, 2021, 11(3): 418. |
30 | GALUPPINI F, CENSI S, MERANTE BOSCHIN I, et al. Papillary thyroid carcinoma: molecular distinction by microRNA profiling[J]. Front Endocrinol, 2022, 13: 834075. |
31 | LAKSHMANAN A, WOJCICKA A, KOTLAREK M, et al. MicroRNA-339-5p modulates Na+/I- symporter-mediated radioiodide uptake[J]. Endocr Relat Cancer, 2015, 22(1): 11-21. |
32 | HOU S S, XIE X R, ZHAO J, et al. Downregulation of miR-146b-3p inhibits proliferation and migration and modulates the expression and location of sodium/iodide symporter in dedifferentiated thyroid cancer by potentially targeting MUC20[J]. Front Oncol, 2020, 10: 566365. |
33 | JUNG C K. Crosstalk between the tumor microenvironment and immune response in thyroid cancer[J]. Gland Surg, 2019, 8(3): 294-297. |
34 | KABASAWA T, OHE R, AUNG N Y, et al. Potential role of M2 TAMs around lymphatic vessels during lymphatic invasion in papillary thyroid carcinoma[J]. Sci Rep, 2021, 11(1): 1150. |
35 | CHEN D W, LANG B H H, MCLEOD D S A, et al. Thyroid cancer[J]. Lancet, 2023, 401(10387): 1531-1544. |
36 | KARACA Z, TANRIVERDI F, UNLUHIZARCI K, et al. VEGFR1 expression is related to lymph node metastasis and serum VEGF may be a marker of progression in the follow-up of patients with differentiated thyroid carcinoma[J]. Eur J Endocrinol, 2011, 164(2): 277-284. |
37 | PLANTINGA T S, PETRULEA M S, OOSTING M, et al. Association of NF-κB polymorphisms with clinical outcome of non-medullary thyroid carcinoma[J]. Endocr Relat Cancer, 2017, 24(7): 307-318. |
38 | OHTA K, PANG X P, BERG L, et al. Antitumor actions of cytokines on new human papillary thyroid carcinoma cell lines[J]. J Clin Endocrinol Metab, 1996, 81(7): 2607-2612. |
39 | SLOOT Y J E, RABOLD K, ULAS T, et al. Interplay between thyroid cancer cells and macrophages: effects on IL-32 mediated cell death and thyroid cancer cell migration[J]. Cell Oncol, 2019, 42(5): 691-703. |
40 | ZHANG G Q, XI C, SHEN C T, et al. Interleukin-6 promotes the dedifferentiation of papillary thyroid cancer cells[J]. Endocr Relat Cancer, 2023, 30(9): e230130. |
41 | QIN Y, SUN W, WANG Z H, et al. ATF2-induced lncRNA GAS8-AS1 promotes autophagy of thyroid cancer cells by targeting the miR-187-3p/ATG5 and miR-1343-3p/ATG7 axes[J]. Mol Ther Nucleic Acids, 2020, 22: 584-600. |
42 | HOLM T M, BIAN Z C, MANUPATI K, et al. Inhibition of autophagy mitigates cell migration and invasion in thyroid cancer[J]. Surgery, 2022, 171(1): 235-244. |
43 | CHEN X, LIN S, LIN Y, et al. BRAF-activated WT1 contributes to cancer growth and regulates autophagy and apoptosis in papillary thyroid carcinoma[J]. J Transl Med, 2022, 20(1): 79. |
44 | SHI Y B, CHEN S Y, LIU R B. The new insights into autophagy in thyroid cancer progression[J]. J Transl Med, 2023, 21(1): 413. |
45 | GUNDAMARAJU R, LU W Y, PAUL M K, et al. Autophagy and EMT in cancer and metastasis: who controls whom?[J]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(9): 166431. |
46 | YANG Y P, LAI W Y, LIN T W, et al. Autophagy reprogramming stem cell pluripotency and multiple-lineage differentiation[J]. J Chin Med Assoc, 2022, 85(6): 667-671. |
47 | WANG M, YU H, WU R, et al. Autophagy inhibition enhances the inhibitory effects of ursolic acid on lung cancer cells[J]. Int J Mol Med, 2020, 46(5): 1816-1826. |
48 | JIMÉNEZ-MORA E, GALLEGO B, DÍAZ-GAGO S, et al. V600EBRAF inhibition induces cytoprotective autophagy through AMPK in thyroid cancer cells[J]. Int J Mol Sci, 2021, 22(11): 6033. |
49 | DÍAZ-GAGO S, VICENTE-GUTIÉRREZ J, RUIZ-RODRÍGUEZ J M, et al. Autophagy sustains mitochondrial respiration and determines resistance to BRAFV600E inhibition in thyroid carcinoma cells[J]. Autophagy, 2024: 1-15. |
50 | ROY S, SUNKARA R R, PARMAR M Y, et al. EMT imparts cancer stemness and plasticity: new perspectives and therapeutic potential[J]. Front Biosci, 2021, 26(2): 238-265. |
51 | DONGRE A, WEINBERG R A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer[J]. Nat Rev Mol Cell Biol, 2019, 20(2): 69-84. |
52 | ZHONG J, LIU C, ZHANG Q H, et al. TGF-β1 induces HMGA1 expression: the role of HMGA1 in thyroid cancer proliferation and invasion[J]. Int J Oncol, 2017, 50(5): 1567-1578. |
53 | KLAUS A, FATHI O, TATJANA T W, et al. Expression of hypoxia-associated protein HIF-1α in follicular thyroid cancer is associated with distant metastasis[J]. Pathol Oncol Res, 2018, 24(2): 289-296. |
54 | VOLATIER T, SCHUMACHER B, CURSIEFEN C, et al. UV protection in the cornea: failure and rescue[J]. Biology, 2022, 11(2): 278. |
55 | CAI X, WANG R, TAN J, et al. Mechanisms of regulating NIS transport to the cell membrane and redifferentiation therapy in thyroid cancer[J]. Clin Transl Oncol, 2021, 23(12): 2403-2414. |
56 | FENG F, YEHIA L, NI Y, et al. A nonpump function of sodium iodide symporter in thyroid cancer via cross-talk with PTEN signaling[J]. Cancer Res, 2018, 78(21): 6121-6133. |
57 | LECHNER M G, BRENT G A. A new twist on a classic: enhancing radioiodine uptake in advanced thyroid cancer[J]. Clin Cancer Res, 2024, 30(7): 1220-1222. |
[1] | 柴红, 黄琴, 陈泽泉, 杨佳欢, 余永利. 消融前刺激性甲状腺球蛋白对分化型甲状腺癌合并结节性甲状腺肿复发或转移的诊断价值[J]. 上海交通大学学报(医学版), 2021, 41(5): 617-621. |
[2] | 许飞,汤玲琳,袁红,宋少莉,黄钢. 分化型甲状腺癌患者碘治疗前肝功能、血脂及血常规水平变化[J]. 上海交通大学学报(医学版), 2018, 38(6): 632-. |
[3] | 姜金星,向芃,陈晓欢,阿依加肯·卡司木马力,谢可炜,倪兆慧,顾乐怡. 激活蛋白激酶A信号对阿霉素肾病小鼠足细胞失分化的影响[J]. 上海交通大学学报(医学版), 2017, 37(4): 462-. |
[4] | 叶智轶,马超,傅宏亮,等. 18F-FDG PET/CT显像在131I全身显像阴性的分化型甲状腺癌中的应用价值[J]. 上海交通大学学报(医学版), 2016, 36(1): 76-. |
[5] | 傅宏亮,杜学亮,李佳宁,等. 计算剂量方案行格雷夫斯病甲状腺功能亢进放射性碘治疗的疗效分析[J]. 上海交通大学学报(医学版), 2014, 34(7): 1039-. |
[6] | 叶智轶,马 超,王 辉. 核素定位显像探查分化型甲状腺癌转移灶的临床研究[J]. 上海交通大学学报(医学版), 2014, 34(1): 44-. |
[7] | 姚小芹, 王 辉, 马 超, 等. 18F-FDG符合线路显像在Tg阳性、131I显像阴性分化型甲状腺癌转移灶中的应用价值[J]. , 2013, 33(2): 174-. |
[8] | 程维维, 王 辉, 冯 方, 等. 18F-FDG PET/CT显像在131I全身扫描及血清Tg均阴性的已清除残留甲状腺组织的分化型甲状腺癌患者中的应用价值[J]. , 2012, 32(8): 1068-. |
[9] | 盛矢薇, 陆汉魁, 陈立波, 等. 分化型甲状腺癌合并甲状腺功能亢进症患者的临床特征及131I清除甲状腺残余组织的疗效[J]. , 2012, 32(1): 82-. |
[10] | 叶智轶, 傅宏亮, 李佳宁, 等. 131I-SPECT/CT融合显像对131I全身显像在分化型甲状腺癌诊治中的增益价值[J]. , 2011, 31(8): 1150-. |
[11] | 吴震宇, 王 辉. 分化型甲状腺癌不同部位转移灶131I-SPECT/CT影像学数据分析[J]. , 2011, 31(8): 1154-. |
[12] | 邱忠领, 许艳红, 宋红俊, 等. 分化型甲状腺癌骨转移的临床特点及影像学诊断分析[J]. , 2010, 30(9): 1059-. |
[13] | 吴震宇, 陈素芸, 杜学良, 等. 分化型甲状腺癌术后或替代药物撤除后患者血清相关激素水平的变化研究[J]. , 2010, 30(6): 713-. |
[14] | 傅宏亮, 杜学亮, 顾振辉, 等. 分化型甲状腺癌131I疗效影响因素分析[J]. , 2010, 30(3): 249-. |
[15] | 盛矢薇, 陈立波, 陆汉魁, 等. 含碘造影剂对分化型甲状腺癌肺转移病灶131I疗效的影响[J]. , 2010, 30(3): 253-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2135
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 448
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||