论著(基础研究)

利用静电纺纳米膜复合3D打印支架构建“C”形环状软骨的初步研究

  • 张恒一 ,
  • 冯蓓 ,
  • 葛阳 ,
  • 高漫辰 ,
  • 白洁 ,
  • 付炜 ,
  • 徐志伟
展开
  • 上海交通大学 医学院附属上海儿童医学中心 1. 心胸外科,2. 儿科转化医学研究所,上海 200127
张恒一(1992—),女,硕士生;电子信箱:henryonezhang@163.com

网络出版日期: 2017-08-25

基金资助

国家自然科学基金(81370117,31200735);上海市科学技术委员会引导类项目(15411966800);上海市卫生和计划生育委员会项目(20144Y0166); 上海交通大学医工交叉项目(YG2012MS36,YG2012MS35);东南大学生物电子学国家重点实验室开放研究基金

Construction of C-shaped cartilage with electrospun gelatin/polycaprolactone nanofibrous membranes and 3D printed supporter#br#

  • ZHANG Heng-yi ,
  • FENG Bei ,
  • GE Yang ,
  • GAO Man-chen ,
  • BAI Jie ,
  • FU Wei ,
  • XU Zhi-wei
Expand
  • 1. Department of Pediatric Cardiothoracic Surgery, 2. Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China

Online published: 2017-08-25

Supported by

National Natural Science Foundation of China, 81370117, 31200735; Project of Science and Technology Commission of Shanghai Municipality, 15411966800; Project of Shanghai Municipal Commission of Health and Family Planning, 20144Y0166; Project of Shanghai Jiao Tong University, YG2012MS36,YG2012MS35; Fund of State Key Laboratory of Bioelectronics, Southeast University

摘要

目的 · 利用兔耳廓软骨细胞,复合明胶(GT) / 聚己内酯(PCL)静电纺纳米纤维膜,并结合 3D 打印聚乳酸己内酯(PLCL) 支架,构建具有“C”形环状结构的组织工程软骨,用于气管软骨的移植修复。方法 · 用酶消化法分离获得原代兔耳廓软骨细胞。通 过静电纺丝技术将GT 和 PCL 纺制成纳米纤维膜,并剪裁成12 cm×2.5 cm 的长方形膜片。以1×108 个 /mL 的密度将第2 代软骨细 胞接种于电纺膜上,并将电纺膜均匀卷叠于3D 打印的 PLCL 的“C”形环状支架上,约卷5 层,以构建软骨组织复合物。埋于裸鼠 皮下培养 8 周,对形成的软骨组织进行大体观察和石蜡切片组织学染色鉴定。结果 · 体内培养 8 周后,白色软骨组织形成,质软,有 一定弹性。外观呈环状,有一定弧度,内表面明显可见凹凸不平、间隔排列的“C”形环状软骨结构,接近正常气管软骨的结构和形 状。组织学染色可见大量典型的软骨陷窝形成以及大量软骨细胞外基质分泌。结论 · 利用兔耳廓软骨细胞,复合 GT/PCL 静电纺纳米 纤维膜,并结合 3D 打印 PLCL 支架,可以构建出具有“C”形环状结构的组织工程软骨,有望应用于气管软骨的移植修复。

本文引用格式

张恒一 , 冯蓓 , 葛阳 , 高漫辰 , 白洁 , 付炜 , 徐志伟 . 利用静电纺纳米膜复合3D打印支架构建“C”形环状软骨的初步研究[J]. 上海交通大学学报(医学版), 2017 , 37(7) : 896 . DOI: 10.3969/j.issn.1674-8115.2017.07.003

Abstract

 Objective · To construct C-shaped cartilage rings by rabbit auricular cartilage-derived chondrocytes combing with both electrospun gelatin/ polycaprolactone(GT/PCL) nanofibrous membranes and 3D printed supporters for repairing tracheal cartilage defects.  Methods · Primary chondrocytes were isolated from rabbit auricular cartilage with methods of trypsin enzyme digestion and collagenase enzyme digestion. After proliferation in vitro, the chondrocytes of passage 2 were harvested for further experiments. Ultrafine composite fibers of GT/PCL were fabricated via electrospinning. The electrospun GT/PCL membranes were tailored into rectangle shape, the length of which is 12 cm and the width is 2.5 cm. Chondrocytes were seeded on membrane at a density of 1×108 cells/mL. Then the membrane were rolled onto a 3D printed supporter of poly(DL-lactide-ε-caprolactone) (PLCL) material to construct a C-shaped cartilage-like complex. After 8 weeks of subcutaneous incubation in vivo, gross inspection and paraffin section staining were applied for evaluation.  Results · After 8 weeks of culture in vivo, mature cartilage-like tissue were formed with open-cylindrical bellow appearance and pecific mechanical property. C-shaped rings arranged at regular intervals on the inner surface of tissue, which were similar to the normal structure of tracheal cartilages. Histological and immunohistological staining showed a large number of typical lacunar structures and extracellular matrix secretions.  Conclusion · It is feasible to construct tissue engineered C-shaped cartilage tissue by combing chondrocytes with GT/PCL membrane and 3D printed PLCL supporter for tracheal cartilage repair.
文章导航

/