综述

人工智能技术在骨肌系统影像学方面的应用

  • 李小敏 ,
  • 曲扬 ,
  • 张少霆 ,
  • 赵亮 ,
  • 刘畅 ,
  • 谢帅宁 ,
  • 戴尅戎 ,
  • 艾松涛
展开
  • 1.上海交通大学医学院附属第九人民医院放射科,上海 200011
    2.上海商汤智能科技有限公司,上海 200030
    3.上海交通大学医学院附属第九人民医院骨科,上海 200011
李小敏(1994—),女,硕士生;电子信箱:lxm549496172@163.com

收稿日期: 2020-07-05

  网络出版日期: 2021-02-28

基金资助

上海市科学技术委员会科研计划项目(19441902700);上海市教育委员会高峰高原学科建设计划(20152221);上海交通大学医工交叉面上项目(YG2017MS03)

Overview of the application of artificial intelligence to radiology of the musculoskeletal system

  • Xiao-min LI ,
  • Yang QU ,
  • Shao-ting ZHANG ,
  • Liang ZHAO ,
  • Chang LIU ,
  • Shuai-ning XIE ,
  • Ke-rong DAI ,
  • Song-tao AI
Expand
  • 1.Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
    2.Shanghai Sensetime Intelligent Technology Co. , Ltd, Shanghai 200030, China
    3.Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China

Received date: 2020-07-05

  Online published: 2021-02-28

Supported by

Scientific Research Project of Shanghai Science and Technology Commission(19441902700);Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support(20152221);Shanghai Jiao Tong University Medical Engineering Cross Grant(YG2017MS03)

摘要

骨肌系统疾病种类繁多,影像学检查是疾病诊断的首要手段。合理选择图像后处理方法,可为疾病的诊断、手术治疗以及预后等提供可靠的评估依据。人工智能技术作为计算机科学发展的新阶段,能够高效、精准地对影像学图像进行预处理和分析,辅助医师诊断和治疗工作,将为骨肌系统影像学领域的发展带来新的机遇。该文就人工智能在骨肌系统疾病的影像诊断方面的应用现状和挑战展开综述,以期为开展相关研究的学者提供一定的参考。

本文引用格式

李小敏 , 曲扬 , 张少霆 , 赵亮 , 刘畅 , 谢帅宁 , 戴尅戎 , 艾松涛 . 人工智能技术在骨肌系统影像学方面的应用[J]. 上海交通大学学报(医学版), 2021 , 41(2) : 262 -266 . DOI: 10.3969/j.issn.1674-8115.2021.02.022

Abstract

Musculoskeletal diseases are diverse. Medical imaging examination is the primary means of disease diagnosis. Reasonable selection of image post-processing methods can provide reliable evaluation basis for disease diagnosis, surgery and prognosis. As a new stage of the development of computer science, artificial intelligence technology can efficiently and accurately preprocess and analyze images, and assist clinicians in diagnosis and treatment. It will bring new opportunities for the development of musculoskeletal imaging. This paper reviews the current situation and challenges of artificial intelligence in the field of imaging diagnosis of musculoskeletal system diseases, in order to provide some reference for the relevant research scholars.

参考文献

1 Sofka CM, Pavlov H. The History of clinical musculoskeletal radiology[J]. Radiol Clin North Am, 2009, 47(3): 349-356.
2 Gyftopoulos S, Lin D, Knoll F, et al. Artificial intelligence in musculoskeletal imaging: current status and future directions[J]. AJR Am J Roentgenol, 2019, 213(3): 506-513.
3 Mintz Y, Brodie R. Introduction to artificial intelligence in medicine[J]. Minim Invasive Ther Allied Technol, 2019, 28(2): 73-81.
4 Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510.
5 Pietka E, Gertych A, Pospiech S, et al. Computer-assisted bone age assessment: image preprocessing and epiphyseal/metaphyseal ROI extraction[J]. IEEE Trans Med Imaging, 2001, 20(8): 715-729.
6 Gertych A, Zhang AF, Sayre J, et al. Bone age assessment of children using a digital hand atlas[J]. Comput Med Imaging Graph, 2007, 31(4-5): 322-331.
7 Thodberg HH, Kreiborg S, Juul A, et al. The BoneXpert method for automated determination of skeletal maturity[J]. IEEE Trans Med Imaging, 2009, 28(1): 52-66.
8 Spampinato C, Palazzo S, Giordano D, et al. Deep learning for automated skeletal bone age assessment in X-ray images[J]. Med Image Anal, 2017, 36: 41-51.
9 李婷婷, 杨秀军, 王乾, 等. 基于整张手腕部DR影像深度学习特征的人工智能骨龄评估方法[J]. 中国数字医学, 2019, 14(11): 29-33.
10 王嘉庆, 梅礼晔, 张俊华. 基于深度学习的手骨X射线图像骨龄评估[J]. 计算机工程, 2021, 47(1): 291-297.
11 Olczak J, Fahlberg N, Maki A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs[J]. Acta Orthop, 2017, 88(6): 581-586.
12 Wu J, Davuluri P, Ward KR, et al. Fracture detection in traumatic pelvic CT images[J]. Int J Biomed Imaging, 2012, 2012: 1-10.
13 Chung SW, Han SS, Lee JW, et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm[J]. Acta Orthop, 2018, 89(4): 468-473.
14 Pranata YD, Wang KC, Wang JC, et al. Deep learning and SURF for automated classification and detection of calcaneus fractures in CT images[J]. Comput Methods Programs Biomed, 2019, 171: 27-37.
15 周清清, 王佳硕, 唐雯, 等. 基于卷积神经网络成人肋骨骨折CT自动检测和分类的应用研究[J]. 影像诊断与介入放射学, 2020, 29(1): 27-31.
16 Tomita N, Cheung YY, Hassanpour S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans[J]. Comput Biol Med, 2018, 98: 8-15.
17 Menashe L, Hirko K, Losina E, et al. The diagnostic performance of MRI in osteoarthritis: a systematic review and meta-analysis[J]. Osteoarthritis Cartilage, 2012, 20(1): 13-21.
18 Quatman CE, Hettrich CM, Schmitt LC, et al. The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review[J]. Am J Sports Med, 2011, 39(7): 1557-1568.
19 Kijowski R, Blankenbaker DG, Munoz del Rio A, et al. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol[J]. Radiology, 2013, 267(2): 503-513.
20 Liu F, Zhou ZY, Samsonov A, et al. Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection[J]. Radiology, 2018, 289(1): 160-169.
21 Xue Y, Zhang R, Deng Y, et al. A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis[J]. PLoS One, 2017, 12(6): e0178992.
22 Norman B, Pedoia V, Noworolski A, et al. Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs[J]. J Digit Imaging, 2019, 32(3): 471-477.
23 Omoumi P, Michoux N, Larbi A, et al. Multirater agreement for grading the femoral and tibial cartilage surface lesions at CT arthrography and analysis of causes of disagreement[J]. Eur J Radiol, 2017, 88: 95-101.
24 Omoumi P, Rubini A, Dubuc JE, et al. Diagnostic performance of CT-arthrography and 1.5T MR-arthrography for the assessment of glenohumeral joint cartilage: a comparative study with arthroscopic correlation[J]. Eur Radiol, 2015, 25(4): 961-969.
25 Miao S, Wang ZJ, Liao R. A CNN regression approach for real-time 2D/3D registration[J]. IEEE Trans Med Imaging, 2016, 35(5): 1352-1363.
26 ?tajduhar I, Mamula M, Mileti? D, et al. Semi-automated detection of anterior cruciate ligament injury from MRI[J]. Comput Methods Programs Biomed, 2017, 140: 151-164.
27 Bien N, Rajpurkar P, Ball RL, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet[J]. PLoS Med, 2018, 15(11): e1002699.
28 Liu F, Guan B, Zhou Z, et al. Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning[J]. Radiol Artif Intell, 2019, 1(3): 180091.
29 Liu F, Zhou Z, Jang H, et al. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging[J]. Magn Reson Med, 2018, 79(4): 2379-2391.
30 Tan CW, Li K, Yan ZN, et al. Towards large-scale MR thigh image analysis via an integrated quantification framework[J]. Neurocomputing, 2017, 229: 63-76.
31 Kemnitz J, Baumgartner CF, Eckstein F, et al. Clinical evaluation of fully automated thigh muscle and adipose tissue segmentation using a U-Net deep learning architecture in context of osteoarthritic knee pain[J]. MAGMA, 2020, 33(4): 483-493.
32 Lodwick GS, Wilson AJ, Farrell C, et al. Estimating rate of growth in bone lesions: observer performance and error[J]. Radiology, 1980, 134(3): 585-590.
33 Reinus WR, Wilson AJ, Kalman B, et al. Diagnosis of focal bone lesions using neural networks[J]. Invest Radiol, 1994, 29(6): 606-611.
34 Do BH, Langlotz C, Beaulieu CF. Bone tumor diagnosis using a na?ve Bayesian model of demographic and radiographic features[J]. J Digit Imaging, 2017, 30(5): 640-647.
35 Huang L, Xia W, Zhang B, et al. MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images[J]. Comput Methods Programs Biomed, 2017, 143: 67-74.
36 Zhang R, Huang L, Xia W, et al. Multiple supervised residual network for osteosarcoma segmentation in CT images[J]. Comput Med Imaging Graph, 2018, 63: 1-8.
37 Duan Q, WANG GT, Wang R, et al. SenseCare: a research platform for medical image informatics and interactive 3D visualization[DB/OL]. (2020-04-03) [2020-05-05]. .
38 He Y, Guo J, Ding X, et al. Convolutional neural network to predict the local recurrence of giant cell tumor of bone after curettage based on pre-surgery magnetic resonance images[J]. Eur Radiol, 2019, 29(10): 5441-5451.
39 Yasaka K, Akai H, Kunimatsu A, et al. Prediction of bone mineral density from computed tomography: application of deep learning with a convolutional neural network[J]. Eur Radiol, 2020, 30(6): 3549-3557.
40 Hong L. Identification of spinal deformity classification with total curvature analysis and artificial neural network[J]. IEEE Trans Biomed Eng, 2008, 55(1): 376-382.
41 Balsiger F, Steindel C, Arn M, et al. Segmentation of peripheral nerves from magnetic resonance neurography: a fully-automatic, deep learning-based approach[J]. Front Neurol, 2018, 9: 777.
42 Stoel B. Use of artificial intelligence in imaging in rheumatology-current status and future perspectives[J]. RMD Open, 2020, 6(1): e001063.
文章导航

/