1 |
Sofka CM, Pavlov H. The History of clinical musculoskeletal radiology[J]. Radiol Clin North Am, 2009, 47(3): 349-356.
|
2 |
Gyftopoulos S, Lin D, Knoll F, et al. Artificial intelligence in musculoskeletal imaging: current status and future directions[J]. AJR Am J Roentgenol, 2019, 213(3): 506-513.
|
3 |
Mintz Y, Brodie R. Introduction to artificial intelligence in medicine[J]. Minim Invasive Ther Allied Technol, 2019, 28(2): 73-81.
|
4 |
Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510.
|
5 |
Pietka E, Gertych A, Pospiech S, et al. Computer-assisted bone age assessment: image preprocessing and epiphyseal/metaphyseal ROI extraction[J]. IEEE Trans Med Imaging, 2001, 20(8): 715-729.
|
6 |
Gertych A, Zhang AF, Sayre J, et al. Bone age assessment of children using a digital hand atlas[J]. Comput Med Imaging Graph, 2007, 31(4-5): 322-331.
|
7 |
Thodberg HH, Kreiborg S, Juul A, et al. The BoneXpert method for automated determination of skeletal maturity[J]. IEEE Trans Med Imaging, 2009, 28(1): 52-66.
|
8 |
Spampinato C, Palazzo S, Giordano D, et al. Deep learning for automated skeletal bone age assessment in X-ray images[J]. Med Image Anal, 2017, 36: 41-51.
|
9 |
李婷婷, 杨秀军, 王乾, 等. 基于整张手腕部DR影像深度学习特征的人工智能骨龄评估方法[J]. 中国数字医学, 2019, 14(11): 29-33.
|
10 |
王嘉庆, 梅礼晔, 张俊华. 基于深度学习的手骨X射线图像骨龄评估[J]. 计算机工程, 2021, 47(1): 291-297.
|
11 |
Olczak J, Fahlberg N, Maki A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs[J]. Acta Orthop, 2017, 88(6): 581-586.
|
12 |
Wu J, Davuluri P, Ward KR, et al. Fracture detection in traumatic pelvic CT images[J]. Int J Biomed Imaging, 2012, 2012: 1-10.
|
13 |
Chung SW, Han SS, Lee JW, et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm[J]. Acta Orthop, 2018, 89(4): 468-473.
|
14 |
Pranata YD, Wang KC, Wang JC, et al. Deep learning and SURF for automated classification and detection of calcaneus fractures in CT images[J]. Comput Methods Programs Biomed, 2019, 171: 27-37.
|
15 |
周清清, 王佳硕, 唐雯, 等. 基于卷积神经网络成人肋骨骨折CT自动检测和分类的应用研究[J]. 影像诊断与介入放射学, 2020, 29(1): 27-31.
|
16 |
Tomita N, Cheung YY, Hassanpour S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans[J]. Comput Biol Med, 2018, 98: 8-15.
|
17 |
Menashe L, Hirko K, Losina E, et al. The diagnostic performance of MRI in osteoarthritis: a systematic review and meta-analysis[J]. Osteoarthritis Cartilage, 2012, 20(1): 13-21.
|
18 |
Quatman CE, Hettrich CM, Schmitt LC, et al. The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review[J]. Am J Sports Med, 2011, 39(7): 1557-1568.
|
19 |
Kijowski R, Blankenbaker DG, Munoz del Rio A, et al. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol[J]. Radiology, 2013, 267(2): 503-513.
|
20 |
Liu F, Zhou ZY, Samsonov A, et al. Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection[J]. Radiology, 2018, 289(1): 160-169.
|
21 |
Xue Y, Zhang R, Deng Y, et al. A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis[J]. PLoS One, 2017, 12(6): e0178992.
|
22 |
Norman B, Pedoia V, Noworolski A, et al. Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs[J]. J Digit Imaging, 2019, 32(3): 471-477.
|
23 |
Omoumi P, Michoux N, Larbi A, et al. Multirater agreement for grading the femoral and tibial cartilage surface lesions at CT arthrography and analysis of causes of disagreement[J]. Eur J Radiol, 2017, 88: 95-101.
|
24 |
Omoumi P, Rubini A, Dubuc JE, et al. Diagnostic performance of CT-arthrography and 1.5T MR-arthrography for the assessment of glenohumeral joint cartilage: a comparative study with arthroscopic correlation[J]. Eur Radiol, 2015, 25(4): 961-969.
|
25 |
Miao S, Wang ZJ, Liao R. A CNN regression approach for real-time 2D/3D registration[J]. IEEE Trans Med Imaging, 2016, 35(5): 1352-1363.
|
26 |
Štajduhar I, Mamula M, Miletić D, et al. Semi-automated detection of anterior cruciate ligament injury from MRI[J]. Comput Methods Programs Biomed, 2017, 140: 151-164.
|
27 |
Bien N, Rajpurkar P, Ball RL, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet[J]. PLoS Med, 2018, 15(11): e1002699.
|
28 |
Liu F, Guan B, Zhou Z, et al. Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning[J]. Radiol Artif Intell, 2019, 1(3): 180091.
|
29 |
Liu F, Zhou Z, Jang H, et al. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging[J]. Magn Reson Med, 2018, 79(4): 2379-2391.
|
30 |
Tan CW, Li K, Yan ZN, et al. Towards large-scale MR thigh image analysis via an integrated quantification framework[J]. Neurocomputing, 2017, 229: 63-76.
|
31 |
Kemnitz J, Baumgartner CF, Eckstein F, et al. Clinical evaluation of fully automated thigh muscle and adipose tissue segmentation using a U-Net deep learning architecture in context of osteoarthritic knee pain[J]. MAGMA, 2020, 33(4): 483-493.
|
32 |
Lodwick GS, Wilson AJ, Farrell C, et al. Estimating rate of growth in bone lesions: observer performance and error[J]. Radiology, 1980, 134(3): 585-590.
|
33 |
Reinus WR, Wilson AJ, Kalman B, et al. Diagnosis of focal bone lesions using neural networks[J]. Invest Radiol, 1994, 29(6): 606-611.
|
34 |
Do BH, Langlotz C, Beaulieu CF. Bone tumor diagnosis using a naïve Bayesian model of demographic and radiographic features[J]. J Digit Imaging, 2017, 30(5): 640-647.
|
35 |
Huang L, Xia W, Zhang B, et al. MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images[J]. Comput Methods Programs Biomed, 2017, 143: 67-74.
|
36 |
Zhang R, Huang L, Xia W, et al. Multiple supervised residual network for osteosarcoma segmentation in CT images[J]. Comput Med Imaging Graph, 2018, 63: 1-8.
|
37 |
Duan Q, WANG GT, Wang R, et al. SenseCare: a research platform for medical image informatics and interactive 3D visualization[DB/OL]. (2020-04-03) [2020-05-05]. .
|
38 |
He Y, Guo J, Ding X, et al. Convolutional neural network to predict the local recurrence of giant cell tumor of bone after curettage based on pre-surgery magnetic resonance images[J]. Eur Radiol, 2019, 29(10): 5441-5451.
|
39 |
Yasaka K, Akai H, Kunimatsu A, et al. Prediction of bone mineral density from computed tomography: application of deep learning with a convolutional neural network[J]. Eur Radiol, 2020, 30(6): 3549-3557.
|
40 |
Hong L. Identification of spinal deformity classification with total curvature analysis and artificial neural network[J]. IEEE Trans Biomed Eng, 2008, 55(1): 376-382.
|
41 |
Balsiger F, Steindel C, Arn M, et al. Segmentation of peripheral nerves from magnetic resonance neurography: a fully-automatic, deep learning-based approach[J]. Front Neurol, 2018, 9: 777.
|
42 |
Stoel B. Use of artificial intelligence in imaging in rheumatology-current status and future perspectives[J]. RMD Open, 2020, 6(1): e001063.
|