综述

硫酸胆固醇的生理功能及其在相关疾病中的作用

  • 蒋悦庭 ,
  • 倪佳英 ,
  • 郭沈睿 ,
  • 李菡 ,
  • 庄雨佳 ,
  • 王锋
展开
  • 1.上海交通大学基础医学院免疫与微生物学系,上海 200025
    2.上海交通大学医学院上海市免疫学研究所,上海 200025
蒋悦庭(1997—),女,本科生;电子信箱:syrinx@sjtu.edu.cn

收稿日期: 2020-02-17

  网络出版日期: 2021-04-06

基金资助

国家重点研发计划(SQ2018YFA090045-01);国家自然科学基金(81771739);上海市科学技术委员会基础研究项目(18JC1414100);上海高水平地方高校创新团队(SSMU-ZDCX20180101)

Physiological function of cholesterol sulfate and its role in related diseases

  • Yue-ting JIANG ,
  • Jia-ying NI ,
  • Shen-rui GUO ,
  • Han LI ,
  • Yu-jia ZHUANG ,
  • Feng WANG
Expand
  • 1.Department of Immunology and Microbiology, Shanghai Jiao Tong University College of Basic Medicine Sciences, Shanghai 200025, China
    2.Shanghai Jiao Tong University, Shanghai Institute of Immunology, Shanghai 200025, China

Received date: 2020-02-17

  Online published: 2021-04-06

Supported by

National Key Research and Development Program of China(SQ2018YFA090045-01);National Natural Science Foundation of China(81771739);Basic Research Project of Shanghai Municipal Commission of Science and Technology(18JC1414100);Innovative Research Team of High-Level Local Universities in Shanghai(SSMU-ZDCX20180101)

摘要

硫酸胆固醇(cholesterol sulfate,CS)是人体中重要的类固醇硫酸酯,由胞浆磺基转移酶(sulfotransferase,SULT)2B1b催化合成,发挥多种重要的生理作用。其广泛分布于人体,如皮肤、肾上腺、肝脏、肺、脑和子宫内膜等。CS在表皮中参与角质层角化套膜的形成和角质细胞分化标志物的表达,从而调节表皮脱屑和屏障功能;在免疫系统胸腺细胞形成的过程中CS抑制T细胞受体信号的传递,并且CS/胆固醇比例直接影响T细胞的胸腺选择,由此参与成熟T细胞受体组库的塑造;CS通过减少氧化应激、维持线粒体膜稳定和增加能量储备调节脑代谢和发挥神经保护效应。此外,CS还通过调节功能蛋白的活性参与多种疾病的发生发展过程。催化CS脱硫的类固醇硫酸酯酶(steroid sulfatase,STS)基因发生缺失突变直接导致了X连锁鱼鳞病(X-linked ichthyosis,XLI)的发生;CS通过促进β淀粉样蛋白(amyloid β-protein,Aβ)聚集参与阿尔茨海默病的发生发展;CS通过抑制肝细胞核因子4α(hepatocyte nuclear factor 4α,HNF4α)的活化来调控糖异生,其衍生物有望用于治疗2型糖尿病;CS在多种癌症中均有异常表达,可与基质金属蛋白酶-7(matrix metalloproteinase-7,MMP-7)相互作用诱导癌细胞的聚集和转移。现阶段的研究重点是在病理生理条件下揭示其具体的分子机制,并由此设计可行的临床治疗方案。

本文引用格式

蒋悦庭 , 倪佳英 , 郭沈睿 , 李菡 , 庄雨佳 , 王锋 . 硫酸胆固醇的生理功能及其在相关疾病中的作用[J]. 上海交通大学学报(医学版), 2021 , 41(3) : 371 -375 . DOI: 10.3969/j.issn.1674-8115.2021.03.015

Abstract

Cholesterol sulfate (CS), synthesized by sulfotransferase (SULT) 2B1b, is an important steroid sulfate and plays important physiological roles in the human body. It is widely distributed in human body, such as skin, adrenal gland, liver, lung, brain and endometrium. CS participates in the formation of cornified envelopes and the expression of keratinocyte differentiation markers in the epidermis, thereby regulating epidermal desquamation and barrier function. CS inhibits T cell signaling during thymocyte development in the immune system, and CS/ Cholesterol ratio directly affects thymic selection for T cells, thereby participating in the shaping of T cell receptor repertoire. CS regulates brain metabolism and exerts neuroprotective effects by reducing oxidative stress, maintaining mitochondrial membrane stability and increasing energy reserves. In addition, CS also contributes to the development of many diseases by regulating the activity of functional proteins. The deletion and mutation of steroid sulfatase (STS) gene, which catalyzes the desulfurization of CS, directly leads to the occurrence of X-linked ichthyosis. CS is involved in the development of Alzheimer's disease by promoting the aggregation of amyloid β - protein (Aβ). CS regulates gluconeogenesis by inhibiting the activation of hepatocyte nuclear factor 4α (HNF4α). Thus CS is expected to treat type 2 diabetes. CS has abnormal expression in a variety of cancers, and can interact with matrix metalloproteinase-7 (MMP-7) to induce the aggregation and metastasis of cancer cells. The main challenges and research priorities at this stage are to reveal specific molecular mechanisms under different physiological and pathological conditions and to design feasible clinical treatments.

参考文献

1 National Center for Biotechnology Information. PubChem Compound Summary for CID65076, Cholesterol sulfate[EB/OL].[2021-01-02]..
2 Koizumi M, Momoeda M, Hiroi H, et al. Expression and regulation of cholesterol sulfotransferase (SULT2B1b) in human endometrium[J]. Fertil Steril, 2010, 93(5): 1538-1544.
3 Zenri F, Hiroi H, Momoeda M, et al. Expression of retinoic acid-related orphan receptor α and its responsive genes in human endometrium regulated by cholesterol sulfate[J]. J Steroid Biochem Mol Biol, 2012, 128(1/2): 21-28.
4 Prah J, Winters A, Chaudhari K, et al. Cholesterol sulfate alters astrocyte metabolism and provides protection against oxidative stress[J]. Brain Res, 2019, 1723: 146378.
5 Strott CA, Higashi Y. Cholesterol sulfate in human physiology: what's it all about?[J]. J Lipid Res, 2003, 44(7): 1268-1278.
6 Sánchez-Guijo A, Oji V, Hartmann MF, et al. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS[J]. J Lipid Res, 2015, 56(9): 1843-1851.
7 Elias PM, Williams ML, Choi EH, et al. Role of cholesterol sulfate in epidermal structure and function: lessons from X-linked ichthyosis[J]. Biochim Biophys Acta, 2014, 1841(3): 353-361.
8 Nagata K, Yamazoe Y. Pharmacogenetics of sulfotransferase[J]. Annu Rev Pharmacol Toxicol, 2000, 40: 159-176.
9 Her C, Wood TC, Eichler EE, et al. Human hydroxysteroid sulfotransferase SULT2B1: two enzymes encoded by a single chromosome 19 gene[J]. Genomics, 1998, 53(3): 284-295.
10 Eckhart L, Tschachler E, Gruber F. Autophagic control of skin aging[J]. Front Cell Dev Biol, 2019, 7: 143.
11 Eckhart L, PLJMZeeuwen. The skin barrier: epidermis vs environment[J]. Exp Dermatol, 2018, 27(8): 805-806.
12 Feingold KR, Jiang YJ. The mechanisms by which lipids coordinately regulate the formation of the protein and lipid domains of the stratum corneum: role of fatty acids, oxysterols, cholesterol sulfate and ceramides as signaling molecules[J]. Dermatoendocrinol, 2011, 3(2): 113-118.
13 Hanley K, Wood L, Ng DC, et al. Cholesterol sulfate stimulates involucrin transcription in keratinocytes by increasing Fra-1, Fra-2, and Jun D[J]. J Lipid Res, 2001, 42(3): 390-398.
14 Denning MF, Kazanietz MG, Blumberg PM, et al. Cholesterol sulfate activates multiple protein kinase C isoenzymes and induces granular cell differentiation in cultured murine keratinocytes[J]. Cell Growth Differ, 1995, 6(12): 1619-1626.
15 Kawabe S, Ikuta T, Ohba M, et al. Cholesterol sulfate activates transcription of transglutaminase 1 gene in normal human keratinocytes[J]. J Invest Dermatol, 1998, 111(6): 1098-1102.
16 Kuroki T, Ikuta T, Kashiwagi M, et al. Cholesterol sulfate, an activator of protein kinase C mediating squamous cell differentiation: a review[J]. Mutat Res, 2000, 462(2/3): 189-195.
17 Hanyu O, Nakae H, Miida T, et al. Cholesterol sulfate induces expression of the skin barrier protein filaggrin in normal human epidermal keratinocytes through induction of RORα[J]. Biochem Biophys Res Commun, 2012, 428(1): 99-104.
18 Presland RB. Function of filaggrin and caspase-14 in formation and maintenance of the epithelial barrier[J]. Dermatol Sinica, 2009, 27: 1-14.
19 Wang F, Beck-García K, Zorzin C, et al. Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol[J]. Nat Immunol, 2016, 17(7): 844-850.
20 Ivanisevic J, Epstein AA, Kurczy ME, et al. Brain region mapping using global metabolomics[J]. Chem Biol, 2014, 21(11): 1575-1584.
21 Diociaiuti A, Angioni A, Pisaneschi E, et al. X-linked ichthyosis: clinical and molecular findings in 35 Italian patients[J]. Exp Dermatol, 2019, 28(10): 1156-1163.
22 郑晓草, 王剑巧, 曹先伟. X-连锁鱼鳞病[J]. 皮肤科学通报, 2020, 37(1): 36-41.
23 Fernandes NF, Janniger CK, Schwartz RA. X-linked ichthyosis: an oculocutaneous genodermatosis[J]. J Am Acad Dermatol, 2010, 62(3): 480-485.
24 Ca?ueto J, Ciria S, Hernández-Martín A, et al. Analysis of the STS gene in 40 patients with recessive X-linked ichthyosis: a high frequency of partial deletions in a Spanish population[J]. J Eur Acad Dermatol Venereol, 2010, 24(10): 1226-1229.
25 Elias PM, Williams ML, Feingold KR. Abnormal barrier function in the pathogenesis of ichthyosis: therapeutic implications for lipid metabolic disorders[J]. Clin Dermatol, 2012, 30(3): 311-322.
26 Kelly JW. Alternative conformations of amyloidogenic proteins govern their behavior[J]. Curr Opin Struct Biol, 1996, 6(1): 11-17.
27 沈怡君. Aβ蛋白在阿尔兹海默病中的损伤机制以及研究进展[J]. 中国实用神经疾病杂志, 2015, 18(1): 127-129.
28 di Paolo G, Kim TW. Linking lipids to Alzheimer's disease: cholesterol and beyond[J]. Nat Rev Neurosci, 2011, 12(5): 284-296.
29 Elbassal EA, Liu HY, Morris C, et al. Effects of charged cholesterol derivatives on Aβ40 amyloid formation[J]. J Phys Chem B, 2016, 120(1): 59-68.
30 Bi YH, Shi XJ, Zhu JJ, et al. Regulation of cholesterol sulfotransferase SULT2B1b by hepatocyte nuclear factor 4α constitutes a negative feedback control of hepatic gluconeogenesis[J]. Mol Cell Biol, 2018, 38(7): e00654-17.
31 Shi XJ, Cheng QQ, Xu LY, et al. Cholesterol sulfate and cholesterol sulfotransferase inhibit gluconeogenesis by targeting hepatocyte nuclear factor 4α[J]. Mol Cell Biol, 2014, 34(3): 485-497.
32 Paine MRL, Kim J, Bennett RV, et al. Whole reproductive system non-negative matrix factorization mass spectrometry imaging of an early-stage ovarian cancer mouse model[J]. PLoS One, 2016, 11(5): e0154837.
33 Johnson CH, Santidrian AF, LeBoeuf SE, et al. Metabolomics guided pathway analysis reveals link between cancer metastasis, cholesterol sulfate, and phospholipids[J]. Cancer Metab, 2017, 5: 9.
34 Turanli B, Karagoz K, Bidkhori G, et al. Multi-omic data interpretation to repurpose subtype specific drug candidates for breast cancer[J]. Front Genet, 2019, 10: 420.
35 Yang J, Broman MM, Cooper PO, et al. Distinct expression patterns of SULT2B1b in human prostate epithelium[J]. Prostate, 2019, 79(11): 1256-1266.
36 Park S, Song CS, Lin CL, et al. Inhibitory interplay of SULT2B1b sulfotransferase with AKR1C3 aldo-keto reductase in prostate cancer[J]. Endocrinology, 2020, 161(2): bqz042.
37 Vickman RE, Crist SA, Kerian K, et al. Cholesterol sulfonation enzyme, SULT2B1b, modulates AR and cell growth properties in prostate cancer[J]. Mol Cancer Res, 2016, 14(9): 776-786.
38 Vickman RE, Yang J, Lanman NA, et al. Cholesterol sulfotransferase SULT2B1b modulates sensitivity to death receptor ligand TNFα in castration-resistant prostate cancer[J]. Mol Cancer Res, 2019, 17(6): 1253-1263.
39 Yang XM, Du XC, Sun L, et al. SULT2B1b promotes epithelial-mesenchymal transition through activation of the β-catenin/MMP7 pathway in hepatocytes[J]. Biochem Biophys Res Commun, 2019, 510(4): 495-500.
40 Hu L, Yang GZ, Zhang Y, et al. Overexpression of SULT2B1b is an independent prognostic indicator and promotes cell growth and invasion in colorectal carcinoma[J]. Lab Invest, 2015, 95(9): 1005-1018.
41 Hong WT, Guo FH, Yang MJ, et al. Hydroxysteroid sulfotransferase 2B1 affects gastric epithelial function and carcinogenesis induced by a carcinogenic agent[J]. Lipids Health Dis, 2019, 18(1): 203.
42 Hu RK, Huffman KE, Chu M, et al. Quantitative secretomic analysis identifies extracellular protein factors that modulate the metastatic phenotype of non-small cell lung cancer[J]. J Proteome Res, 2016, 15(2): 477-486.
43 Samukange V, Yasukawa K, Inouye K. Effects of heparin and cholesterol sulfate on the activity and stability of human matrix metalloproteinase 7[J]. Biosci Biotechnol Biochem, 2014, 78(1): 41-48.
44 Yamamoto K, Miyazaki K, Higashi S. Cholesterol sulfate alters substrate preference of matrix metalloproteinase-7 and promotes degradations of pericellular laminin-332 and fibronectin[J]. J Biol Chem, 2010, 285(37): 28862-28873.
45 Yamamoto K, Miyazaki K, Higashi S. Pericellular proteolysis by matrix metalloproteinase-7 is differentially modulated by cholesterol sulfate, sulfatide, and cardiolipin[J]. FEBS J, 2014, 281(15): 3346-3356.
46 Prior SH, Fulcher YG, Koppisetti RK, et al. Charge-triggered membrane insertion of matrix metalloproteinase-7, supporter of innate immunity and tumors[J]. Structure, 2015, 23(11): 2099-2110.
47 Ishikawa T, Kimura Y, Hirano H, et al. Matrix metalloproteinase-7 induces homotypic tumor cell aggregation via proteolytic cleavage of the membrane-bound Kunitz-type inhibitor HAI-1[J]. J Biol Chem, 2017, 292(50): 20769-20784.
文章导航

/