网络出版日期: 2021-06-29
基金资助
国家自然科学基金(31900711);上海交通大学医学院高水平地方高校创新团队(SSMU-ZDCX20181100);上海市科学技术委员会基础研究重点项目(18JC1420302);上海市市级科技重大专项(2018SHZDZX05)
Whole-brain inputs mapping to the projection neurons in laterodorsal thalamic nucleus innervating primary visual cortex in mice
Online published: 2021-06-29
Supported by
National Natural Science Foundation of China(31900711);Innovative Research Team of High-Level Local Universities in Shanghai(SSMU-ZDCX20181100);Basic Research Project of Science and Technology Commission of Shanghai Municipality(18JC1420302);Key Project of Science and Technology Commission of Shanghai Municipality(2018SHZDZX05)
目的·在小鼠全脑范围定量分析支配初级视皮层的丘脑背外侧核神经元亚群的直接输入神经元。方法·向C57BL/6J雄性小鼠初级视皮层注射表达小麦胚芽凝集素和Cre重组酶融合蛋白的腺相关病毒,同时向丘脑背外侧核注射Cre重组酶依赖的分别表达禽类肉瘤/白血病病毒包膜蛋白受体TVA和狂犬病毒糖蛋白的假性狂犬病毒辅助腺相关病毒。28 d后,向初级视皮层注射假性狂犬病毒。待假性狂犬病毒携带的绿色荧光蛋白在丘脑背外侧核神经元亚群的上游输入神经元中充分表达后,即7 d后,收集小鼠脑部样本,并制作冰冻切片。荧光显微镜下观察支配初级视皮层的丘脑背外侧核神经元亚群的输入神经元在脑内的分布情况,并使用高通量解剖数据分析软件进行定量分析。结果·荧光显微镜观察及定量分析结果发现,支配初级视觉皮层的丘脑背外侧核神经元亚群的输入神经元在皮层、间脑和中脑均有分布,分别占全脑绿色荧光标记神经元总数的(58.1±4.8)%、(23.2±0.9)%和(15.3±4.0)%。在皮层区域,输入神经元分布最多的区域是躯体运动皮层、视皮层和躯体感觉皮层;在前额叶皮层和中间联合皮层也有大量输入神经元分布;在感觉皮层中,输入神经元的胞体主要分布在第5层和第6层。结论·支配初级视觉皮层的丘脑背外侧核神经元亚群的输入神经元在全脑分布广泛,其中多数位于皮层区。
王丽昭 , 马国芬 , 刘燕梅 , 王彦婕 , 王紫玥 , 陈兆南 , 张思宇 , 徐天乐 . 支配初级视皮层的丘脑背外侧核神经元亚群的小鼠全脑输入图谱构建[J]. 上海交通大学学报(医学版), 2021 , 41(6) : 701 -709 . DOI: 10.3969/j.issn.1674-8115.2021.06.001
·To analyze the whole-brain inputs to the projection neurons in the lateral dorsal nucleus (LD) of thalamus innervating primary visual cortex (V1) in mice.
·The adeno-associated virus (AAV) vectors expressing the fusion protein of wheat germ agglutinin and Cre recombinase (Cre) were injected into V1 of C57BL/6J male mice, and the AAV vectors with Cre-inducible expression of avian sarcoma/leukosis virus envelope glycoprotein receptor TVA and rabies glycoprotein were injected into LD, respectively. Twenty-eight days later, the pseudotyped rabies virus (RV) was injected into V1. After the full expression of RV-mediated green fluorescent protein in the infected input neurons of LD, i.e., 7 d later, brain samples were collected and frozen sections were made. The whole-brain distribution of RV-labeled neurons were observed under fluorescence microscope, and quantitative analysis was performed by using high-throughput anatomical data analysis software.
·Through fluorescence microscope and quantitative analysis, the whole-brain map showed that the inputs of LD neurons innervating V1 mainly came from cortex, middle brain and inter brain, accounting for (58.1±4.8)%, (23.2±0.9)% and (15.3±4.0)% of the total number of GFP-labeled neurons in the whole brain, respectively. In the cortex, the areas with the most input neurons were somatomotor area, visual area and somatosensory area. A large number of input neurons were also distributed in prefrontal cortex and medial commissural cortex. In the sensory cortex, the cell bodies of the inputs were mainly distributed in the fifth and sixth layers.
·The direct inputs of LD neuron subgroups innervating V1 in mice are widely distributed throughout the brain, most of which are located in the cortex.
1 | Sherman SM. Functioning of circuits connecting thalamus and cortex[J]. Compr Physiol, 2017, 7(2): 713-739. |
2 | Halassa MM. Fronto-thalamic architectures for cognitive algorithms[J]. Neuron, 2018, 98(2): 237-239. |
3 | Sherman SM, Guillery RW. Functional organization of thalamocortical relays[J]. J Neurophysiol, 1996, 76(3): 1367-1395. |
4 | Hu F, Kamigaki T, Zhang Z, et al. Prefrontal corticotectal neurons enhance visual processing through the superior colliculus and pulvinar thalamus[J]. Neuron, 2019, 104(6): 1141-1152.e4. |
5 | Oh SW, Harris JA, Ng L, et al. A mesoscale connectome of the mouse brain[J]. Nature, 2014, 508(7495): 207-214. |
6 | Shibata H. Organization of retrosplenial cortical projections to the laterodorsal thalamic nucleus in the rat[J]. Neurosci Res, 2000, 38(3): 303-311. |
7 | Shibata H. Direct projections from the entorhinal area to the anteroventral and laterodorsal thalamic nuclei in the rat[J]. Neurosci Res, 1996, 26(1): 83-87. |
8 | Haery L, Deverman BE, Matho KS, et al. Adeno-associated virus technologies and methods for targeted neuronal manipulation[J]. Front Neuroanat, 2019, 13: 93. |
9 | Viaene AN, Petrof I, Sherman SM. Properties of the thalamic projection from the posterior medial nucleus to primary and secondary somatosensory cortices in the mouse[J]. Proc Natl Acad Sci USA, 2011, 108(44): 18156-18161. |
10 | Zhang SY, Xu M, Chang WC, et al. Organization of long-range inputs and outputs of frontal cortex for top-down control[J]. Nat Neurosci, 2016, 19(12): 1733-1742. |
11 | Hunnicutt BJ, Long BR, Kusefoglu D, et al. A comprehensive thalamocortical projection map at the mesoscopic level[J]. Nat Neurosci, 2014, 17(9): 1276-1285. |
12 | Shibata H, Naito J. Organization of anterior cingulate and frontal cortical projections to the anterior and laterodorsal thalamic nuclei in the rat[J]. Brain Res, 2005, 1059(1): 93-103. |
13 | Sherman SM. Thalamus plays a central role in ongoing cortical functioning[J]. Nat Neurosci, 2016, 19(4): 533-541. |
14 | Li Y, Lopez-Huerta VG, Adiconis X, et al. Distinct subnetworks of the thalamic reticular nucleus[J]. Nature, 2020, 583(7818): 819-824. |
15 | Martinez-Garcia RI, Voelcker B, Zaltsman JB, et al. Two dynamically distinct circuits drive inhibition in the sensory thalamus[J]. Nature, 2020, 583(7818): 813-818. |
16 | Wang L, McAlonan K, Goldstein S, et al. A causal role for mouse superior colliculus in visual perceptual decision-making[J]. J Neurosci, 2020, 40(19): 3768-3782. |
17 | Ellis EM, Gauvain G, Sivyer B, et al. Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus[J]. J Neurophysiol, 2016, 116(2): 602-610. |
/
〈 |
|
〉 |