论著 · 基础研究

钠钙交换体阻滞剂CB-DMB对人胶质母细胞瘤细胞生长的抑制作用

  • 刘景景 ,
  • 胡慧洁 ,
  • 刘子楷 ,
  • 宋明柯
展开
  • 上海交通大学基础医学院药理学与化学生物学系,上海 200025
刘景景(1995—),女,硕士生;电子信箱:liujing20xx@foxmail.com

网络出版日期: 2021-06-29

基金资助

国家自然科学基金(81873807);上海交通大学医学院高水平地方高校创新团队(SSMU-ZDCX20181201)

Suppressing effect of the Na+/Ca2+ exchanger blocker CB-DMB on the growth of human glioblastoma cells

  • Jing-jing LIU ,
  • Hui-jie HU ,
  • Zi-kai LIU ,
  • Ming-ke SONG
Expand
  • Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University College of Basic Medical Sciences, Shanghai 200025, China

Online published: 2021-06-29

Supported by

National Natural Science Foundation of China(81873807);Innovative Research Team of High-level Local Universities in Shanghai(SSMU-ZDCX20181201)

摘要

目的·研究钠钙交换体(Na+/Ca2+ exchanger,NCX)阻滞剂对人胶质母细胞瘤生长的抑制作用。方法·体外培养人胶质母细胞瘤细胞(U87、U251、SF188)和星形胶质细胞,用NCX阻滞剂SN-6、YM244769、SEA0400、5-(N-4-氯苄基)-N-(2',4'-二甲基)氨苯蝶啶(CB-DMB)以及化学治疗药物替莫唑胺(temozolomide,TMZ)处理细胞。SN-6、YM244769和SEA0400是NCX反向模式的选择性阻滞剂;CB-DMB是NCX双向模式的选择性阻滞剂,但优先阻滞NCX的正向模式;TMZ作为参考。CCK-8实验测定细胞生长活性,并分析药物对胶质母细胞瘤细胞的半数抑制浓度(half maximal inhibitory concentration,IC50)。钙成像技术检测NCX阻滞剂处理后U87细胞内Ca2+信号的变化,Western blotting检测促分裂原活化的蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路蛋白的表达,流式细胞术检测NCX阻滞剂对细胞凋亡的影响。结果·CCK-8实验结果表明,与胶质母细胞瘤细胞(U87、U251、SF188)共孵育48 h后,NCX双向阻滞剂CB-DMB呈剂量依赖性地抑制肿瘤细胞的生长活性,IC50值分别为2.06、2.19 和1.82 μmol/L;而NCX反向阻滞剂SN-6、YM244769和SEA0400对胶质母细胞瘤细胞的生长活性均无显著影响。CB-DMB对星形胶质细胞生长活性的影响较小。钙成像和Western blotting结果表明,CB-DMB通过阻滞NCX的正向模式导致U87细胞内Ca2+ 增加,引起胞内钙超载,进而诱导U87细胞凋亡,并激活MAPK信号通路。流式细胞术结果表明,与TMZ相比,CB-DMB能够更快地引起U87细胞凋亡(P=0.002);CB-DMB与TMZ联合用药,增强了TMZ对肿瘤细胞生长活性的抑制作用。结论·CB-DMB对人胶质母细胞瘤的抑制作用可能与阻滞NCX的正向转运模式有关。细胞膜NCX可能成为胶质母细胞瘤治疗的潜在新靶点。

本文引用格式

刘景景 , 胡慧洁 , 刘子楷 , 宋明柯 . 钠钙交换体阻滞剂CB-DMB对人胶质母细胞瘤细胞生长的抑制作用[J]. 上海交通大学学报(医学版), 2021 , 41(6) : 710 -716 . DOI: 10.3969/j.issn.1674-8115.2021.06.002

Abstract

Objective

·To test the inhibitory effect of the Na+/Ca2+ exchanger (NCX) blockers on the growth of human glioblastoma cells.

Methods

·Human glioblastoma cell lines (U87, U251 and SF188) and human astrocytes were cultured in vitro. The cells were treated with NCX blockers SN-6, YM244769, SEA0400, CB-DMB and the chemotherapeutic agent temozolomide (TMZ). SN-6, YM244769 and SEA0400 were selective inhibitors for the reverse operation of NCX; while CB-DMB was NCX bidirectional blocker, but preferentially blocked the forward mode of NCX. The TMZ was used as a reference drug. Cell counting kit-8 (CCK-8) assay was used to quantify and assess the cell viability, and half maximal inhibitory concentration (IC50) of the drug was obtained. Calcium imaging was used to detect the changes of Ca2+ signal in U87 cells treated with NCX inhibitors, and Western blotting was used to detect the expression of mitogen-activated protein kinase (MAPK) signaling pathway proteins. Cellular apoptosis was evaluated by flow cytometry assay.

Results

·CCK-8 results showed that direct application of the NCX bidirectional blocker CB-DMB to glioblastoma cell lines (U87, U251 and SF188) for 48 h caused a dose-dependent growth inhibition with IC50 values of 2.06, 2.19 and 1.82 μmol/L, respectively. In contrast, NCX reverse blockers SN-6, YM244769 and SEA0400 had no significant effect on the growth activity of glioblastoma cells. CB-DMB had little effect on the growth activity of human astrocytes. Calcium imaging and Western blotting results confirmed that CB-DMB blocked the forward transport mode of NCX to elevate intracellular Ca2+, causing intracellular calcium overload and then inducing apoptosis of U87 cells and activating MAPK signaling pathway. Flow cytometry assay results showed that the rate of apoptosis induced by CB-DMB in glioblastoma cells was much faster than that induced by TMZ (P=0.002). The combination of CB-DMB and TMZ enhanced the inhibitory effect of TMZ on the growth of tumor cells.

Conclusion

·The inhibitory effect of CB-DMB on the growth of human glioblastoma cells may be related to blocking the forward transport mode of NCX. The plasma membrane NCX is a potential new target for the treatment of human glioblastoma.

参考文献

1 Carter JH, McNulty SN, Cimino PJ, et al. Targeted next-generation sequencing in molecular subtyping of lower-grade diffuse gliomas: application of the World Health Organization's 2016 revised criteria for central nervous system tumors[J]. J Mol Diagn, 2017, 19(2): 328-337.
2 Pessina F, Navarria P, Cozzi L, et al. Value of surgical resection in patients with newly diagnosed grade Ⅲ glioma treated in a multimodal approach: surgery, chemotherapy and radiotherapy[J]. Ann Surg Oncol, 2016, 23(9): 3040-3046.
3 Yamashiro K, Nakao K, Ohba S, et al. Human glioma cells acquire temozolomide resistance after repeated drug exposure via DNA mismatch repair dysfunction[J]. Anticancer Res, 2020, 40(3): 1315-1323.
4 Yamamura M, Amano Y, Sakagami H, et al. Calcium mobilization during nicotine-induced cell death in human glioma and glioblastoma cell lines[J]. Anticancer Res, 1998, 18(4A): 2499-2502.
5 Robil N, Petel F, Kilhoffer MC, et al. Glioblastoma and calcium signaling: analysis of calcium toolbox expression[J]. Int J Dev Biol, 2015, 59(7/8/9): 407-415.
6 Zhang Y, Cruickshanks N, Yuan F, et al. Targetable T-type calcium channels drive glioblastoma[J]. Cancer Res, 2017, 77(13): 3479-3490.
7 Song M, Chen D, Yu SP. The TRPC channel blocker SKF 96365 inhibits glioblastoma cell growth by enhancing reverse mode of the Na+/Ca2+ exchanger and increasing intracellular Ca2+[J]. Br J Pharmacol, 2014, 171(14): 3432-3447.
8 Amoroso S, de Maio M, Russo GM, et al. Pharmacological evidence that the activation of the Na+-Ca2+ exchanger protects C6 glioma cells during chemical hypoxia[J]. Br J Pharmacol, 1997, 121(2): 303-309.
9 Hu HJ, Wang SS, Wang YX, et al. Blockade of the forward Na+/Ca2+ exchanger suppresses the growth of glioblastoma cells through Ca2+-mediated cell death[J]. Br J Pharmacol, 2019, 176(15): 2691-2707.
10 Abrunhosa-Branquinho AN, Bar-Deroma R, Collette S, et al. Radiotherapy quality assurance for the RTOG 0834/EORTC 26053-22054/NCIC CTG CEC.1/CATNON intergroup trial concurrent and adjuvant temozolomide chemotherapy in newly diagnosed non-1p/19q deleted anaplastic glioma: individual case review analysis[J]. Radiother Oncol, 2018, 127(2): 292-298.
11 Watanabe Y, Kimura J. Blocking effect of bepridil on Na+/Ca2+ exchange current in Guinea pig cardiac ventricular myocytes[J]. Jpn J Pharmacol, 2001, 85(4): 370-375.
12 Cheng H, Zhang Y, Du C, et al. High potency inhibition of hERG potassium channels by the sodium-calcium exchange inhibitor KB-R7943[J]. Br J Pharmacol, 2012, 165(7): 2260-2273.
13 Secondo A, Pannaccione A, Molinaro P, et al. Molecular pharmacology of the amiloride analog 3-amino-6-chloro-5-[(4-chloro-benzyl)amino]-n-[[(2, 4-dimethylbenzyl)-amino]iminomethyl]-pyrazinecarboxamide (CB-DMB) as a pan inhibitor of the Na+-Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in stably transfected cells[J]. J Pharmacol Exp Ther, 2009, 331(1): 212-221.
14 Zhao YT, Valdivia CR, Gurrola GB, et al. Arrhythmogenesis in a catecholaminergic polymorphic ventricular tachycardia mutation that depresses ryanodine receptor function[J]. Proc Natl Acad Sci USA, 2015, 112(13): E1669-E1677.
15 Bender S, Tang YJ, Lindroth AM, et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas[J]. Cancer Cell, 2013, 24(5): 660-672.
16 Tveden-Nyborg P, Bergmann TK, Lykkesfeldt J. Basic & clinical pharmacology & toxicology policy for experimental and clinical studies[J]. Basic Clin Pharmacol Toxicol, 2018, 123(3): 233-235.
17 程哲, 汪潮潮, 吴娟, 等. BFAR在胶质瘤中的表达及其与胶质瘤预后的关系[J]. 医学信息, 2021, 34(7): 78-81.
18 Li JH, Li SY, Shen MX, et al. Anti-tumor effects of Solanum nigrum L. extraction on C6 high-grade glioma[J]. J Ethnopharmacol, 2021, 274: 114034.
19 Li LL, Sun LN, Zhou HY, et al. Selective alteration of expression of Na+/Ca2+ exchanger isoforms after transient focal cerebral ischemia in rats[J]. Neurosci Lett, 2006, 404(3): 249-253.
20 Tomimoto H, Yanagihara T. Immunoelectron microscopic study of tubulin and microtubule-associated proteins after transient cerebral ischemia in gerbils[J]. Acta Neuropathol, 1992, 84(4): 394-399.
21 Zhang B, Liu B, Roos CM, et al. TRPC6 and TRPC4 heteromultimerization mediates store depletion-activated NCX1 reversal in proliferative vascular smooth muscle cells[J]. Channels (Austin), 2018, 12(1): 119-125.
22 Zhang J. New insights into the contribution of arterial NCX to the regulation of myogenic tone and blood pressure[J]. Adv Exp Med Biol, 2013, 961: 329-343.
23 Pignataro G, Gala R, Cuomo O, et al. Two sodium/calcium exchanger gene products, NCX1 and NCX3, play a major role in the development of permanent focal cerebral ischemia[J]. Stroke, 2004, 35(11): 2566-2570.
24 Hu HJ, Song M. Disrupted ionic homeostasis in ischemic stroke and new therapeutic targets[J]. J Stroke Cerebrovasc Dis, 2017, 26(12): 2706-2719.
25 Goto Y, Ogata M, Kita S, et al. YM-244769, a novel Na+/Ca2+ exchange inhibitor, efficiently improves ischemia/reperfusion-induced renal injury[J]. Biophys J, 2012, 102(3): 662a-663a.
26 Watanabe Y, Koide Y, Kimura J. Topics on the Na+/Ca2+ exchanger: pharmacological characterization of Na+/Ca2+ exchanger inhibitors[J]. J Pharmacol Sci, 2006, 102(1): 7-16.
27 White CD, Sacks DB. Regulation of MAP kinase signaling by calcium[J]. Methods Mol Biol, 2010, 661: 151-165.
文章导航

/