综述

丙酸血症的心血管受累表现及机制

  • 刘鹰 ,
  • 武育蓉 ,
  • 孙锟
展开
  • 上海交通大学医学院附属新华医院儿童心脏中心,上海 200092
刘 鹰(1994—),男,博士生;电子信箱:1920228145@qq.com

网络出版日期: 2021-06-29

基金资助

国家重点研发项目(2018YFC1002400)

Cardiovascular involvement in propionic acidemia and related mechanisms

  • Ying LIU ,
  • Yu-rong WU ,
  • Kun SUN
Expand
  • Department of Pediatric Cardiology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, China

Online published: 2021-06-29

Supported by

National Key R&D Program of China(2018YFC1002400)

摘要

丙酸血症是常染色体隐性遗传的有机酸血症。除生长发育障碍和中枢神经系统损伤外,其最主要的中远期并发症,同时也是常见的致死原因,包括扩张型心肌病和心律失常(长Q-T间期综合征和心室颤动等)。心血管受累的机制包括丙酸等代谢产物过量引起心肌细胞线粒体能量代谢紊乱、氧化应激损伤和离子通道受损等。目前尚无公认的丙酸血症心肌病治疗指南。有观点认为,肝脏移植可以纠正代谢紊乱从而逆转心肌病变,而抗氧化剂和提高心肌能量供应的药物有望成为未来丙酸血症心肌病的治疗方案。

本文引用格式

刘鹰 , 武育蓉 , 孙锟 . 丙酸血症的心血管受累表现及机制[J]. 上海交通大学学报(医学版), 2021 , 41(6) : 799 -802 . DOI: 10.3969/j.issn.1674-8115.2021.06.016

Abstract

Propionic acidemia (PA) is an autosomal recessive disorder of organic acidemia. In addition to developmental delay and central nervous system damage, its most important mid- and long-term complications include dilated cardiomyopathy and arrhythmia (long Q-T syndrome and ventricular fibrillation, etc.), which are also major causes of mortality. The mechanisms of cardiovascular involvement include disorder of mitochondrial energy metabolism, oxidative stress and ion channel damage caused by excessive metabolites such as propionic acid. There are no recognized guidelines for the treatment of PA-related cardiomyopathy. Liver transplantation is recognized as a method to correct metabolic disorders and reverse cardiomyopathy. Antioxidants and drugs that increase myocardial energy supply are expected to become the future treatment options for PA-related cardiomyopathy.

参考文献

1 Baumgartner MR, H?rster F, Dionisi-Vici C, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia[J]. Orphanet J Rare Dis, 2014, 9: 130.
2 K?lker S, Valayannopoulos V, Burlina AB, et al. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: the evolving clinical phenotype[J]. J Inherit Metab Dis, 2015, 38(6): 1059-1074.
3 Grünert SC, Müllerleile S, de Silva L, et al. Propionic acidemia: clinical course and outcome in 55 pediatric and adolescent patients[J]. Orphanet J Rare Dis, 2013, 8: 6.
4 Pena L, Franks J, Chapman KA, et al. Natural history of propionic acidemia[J]. Mol Genet Metab, 2012, 105(1): 5-9.
5 Massoud AF, Leonard JV. Cardiomyopathy in propionic acidaemia[J]. Eur J Pediatr, 1993, 152(5): 441-445.
6 Kovacevic A, Garbade SF, Hoffmann GF, et al. Cardiac phenotype in propionic acidemia: results of an observational monocentric study[J]. Mol Genet Metab, 2020, 130(1): 41-48.
7 Romano S, Valayannopoulos V, Touati G, et al. Cardiomyopathies in propionic aciduria are reversible after liver transplantation[J]. J Pediatr, 2010, 156(1): 128-134.
8 Mardach R, Verity MA, Cederbaum SD. Clinical, pathological, and biochemical studies in a patient with propionic acidemia and fatal cardiomyopathy[J]. Mol Genet Metab, 2005, 85(4): 286-290.
9 Bhan AK, Brody C. Propionic acidemia: a rare cause of cardiomyopathy[J]. Congest Heart Fail, 2001, 7(4): 218-219.
10 Baumgartner D, Scholl-Bürgi S, Sass JO, et al. Prolonged QTc intervals and decreased left ventricular contractility in patients with propionic acidemia[J]. J Pediatr, 2007, 150(2): 192-197, 197.e1.
11 Arrizza C, de Gottardi A, Foglia E, et al. Reversal of cardiomyopathy in propionic acidemia after liver transplantation: a 10-year follow-up[J]. Transpl Int, 2015, 28(12): 1447-1450.
12 Lee TM, Addonizio LJ, Barshop BA, et al. Unusual presentation of propionic acidaemia as isolated cardiomyopathy[J]. J Inherit Metab Dis, 2009, 32(): S97-S101.
13 de Keyzer Y, Valayannopoulos V, Benoist JF, et al. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria[J]. Pediatr Res, 2009, 66(1): 91-95.
14 Ameloot K, Vlasselaers D, Dupont M, et al. Left ventricular assist device as bridge to liver transplantation in a patient with propionic acidemia and cardiogenic shock[J]. J Pediatr, 2011, 158(5): 866-867.
15 Fragaki K, Cano A, Benoist JF, et al. Fatal heart failure associated with CoQ10 and multiple OXPHOS deficiency in a child with propionic acidemia[J]. Mitochondrion, 2011, 11(3): 533-536.
16 Laemmle A, Balmer C, Doell C, et al. Propionic acidemia in a previously healthy adolescent with acute onset of dilated cardiomyopathy[J]. Eur J Pediatr, 2014, 173(7): 971-974.
17 Berry GT, Blume ED, Wessel A, et al. The re-occurrence of cardiomyopathy in propionic acidemia after liver transplantation[J]. JIMD Rep, 2020, 54(1): 3-8.
18 Peregud-Pogorzelska M, Ka?mierczak J, Zielska M, et al. Rare indication for cardioverter?defibrillator implantation: propionic acidemia complicated by dilated cardiomyopathy and prolonged QT interval[J]. Kardiol Pol, 2019, 77(5): 584-585.
19 Genuardi MV, Kagawa H, Minervini M, et al. A case report of cardiac transplantation for isolated cardiomyopathy associated with propionic acidemia[J]. Prog Transpl, 2019, 29(4): 364-366.
20 Tan NS, Bajaj RR, Morel C, et al. Metabolic cardiomyopathy from propionic acidemia precipitating cardiac arrest in a 25-year-old man[J]. CMAJ, 2018, 190(29): E883-E887.
21 Baruteau J, Hargreaves I, Krywawych S, et al. Successful reversal of propionic acidaemia associated cardiomyopathy: evidence for low myocardial coenzyme Q10 status and secondary mitochondrial dysfunction as an underlying pathophysiological mechanism[J]. Mitochondrion, 2014, 17: 150-156.
22 Riemersma M, Hazebroek MR, van den Enden ATJMH, et al. Propionic acidemia as a cause of adult-onset dilated cardiomyopathy[J]. Eur J Hum Genet, 2017, 25(11): 1195-1201.
23 Pena L, Burton BK. Survey of health status and complications among propionic acidemia patients[J]. Am J Med Genet A, 2012, 158A(7): 1641-1646.
24 Quintero J, Molera C, Juamperez J, et al. The role of liver transplantation in propionic acidemia[J]. Liver Transplant, 2018, 24(12): 1736-1745.
25 Gallego-Villar L, Pérez B, Ugarte M, et al. Antioxidants successfully reduce ROS production in propionic acidemia fibroblasts[J]. Biochem Biophys Res Commun, 2014, 452(3): 457-461.
26 Rivera-Barahona A, Alonso-Barroso E, Pérez B, et al. Treatment with antioxidants ameliorates oxidative damage in a mouse model of propionic acidemia[J]. Mol Genet Metab, 2017, 122(1/2): 43-50.
27 Gallego-Villar L, Pérez-Cerdá C, Pérez B, et al. Functional characterization of novel genotypes and cellular oxidative stress studies in propionic acidemia[J]. J Inherit Metab Dis, 2013, 36(5): 731-740.
28 Guenzel AJ, Hofherr SE, Hillestad M, et al. Generation of a hypomorphic model of propionic acidemia amenable to gene therapy testing[J]. Mol Ther, 2013, 21(7): 1316-1323.
29 Fulgencio-Covián A, Alonso-Barroso E, Guenzel AJ, et al. Pathogenic implications of dysregulated miRNAs in propionic acidemia related cardiomyopathy[J]. Transl Res, 2020, 218: 43-56.
30 Roginski AC, Wajner A, Cecatto C, et al. Disturbance of bioenergetics and calcium homeostasis provoked by metabolites accumulating in propionic acidemia in heart mitochondria of developing rats[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(5): 165682.
31 Wang YX, Christopher BA, Wilson KA, et al. Propionate-induced changes in cardiac metabolism, notably CoA trapping, are not altered by l-carnitine[J]. Am J Physiol Endocrinol Metab, 2018, 315(4): E622-E633.
32 Rivera-Barahona A, Fulgencio-Covián A, Pérez-Cerdá C, et al. Dysregulated miRNAs and their pathogenic implications for the neurometabolic disease propionic acidemia[J]. Sci Rep, 2017, 7(1): 5727.
33 Tamayo M, Fulgencio-Covián A, Navarro-García JA, et al. Intracellular calcium mishandling leads to cardiac dysfunction and ventricular arrhythmias in a mouse model of propionic acidemia[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(1): 165586.
34 Bodi I, Grünert SC, Becker N, et al. Mechanisms of acquired long QT syndrome in patients with propionic academia[J]. Heart Rhythm, 2016, 13(6): 1335-1345.
文章导航

/