网络出版日期: 2021-08-03
基金资助
国家自然科学基金(81974340)
Preparation of cell membrane-coated nanoparticles and its application to antimicrobial
Online published: 2021-08-03
Supported by
National Natural Science Foundation of China(81974340)
石亭旺 , 陈云丰 . 细胞膜包被纳米颗粒的制备及其在抗菌中的应用[J]. 上海交通大学学报(医学版), 2021 , 41(7) : 953 -958 . DOI: 10.3969/j.issn.1674-8115.2021.07.017
Due to the complex pathophysiological characteristics of the infected microenvironment and the development of bacterial resistance, conventional antibiotic treatments are facing increasingly more clinical challenges. Cell membrane-coated nanoparticle (CMCNP) is a kind of biomimetic materials emerging in recent years which can be obtained by directly wrapping the membrane vesicles onto the nanoparticle cores through physical means. Recently, CMCNP has displayed a wide application prospect in the areas of targeting infected areas, neutralization of bacterial toxins and development of antibacterial vaccines with the help of biological functions of cell membrane vesicles and the superior physicochemical properties of nanoparticles. However, CMCNP is still at the experimental stage in the biomedical field, and its safety and effectiveness need to be further verified for clinical applications.
1 | Mi G, Shi D, Wang M, et al. Reducing bacterial infections and biofilm formation using nanoparticles and nanostructured antibacterial surfaces[J]. Adv Healthc Mater, 2018, 7(13): e1800103. |
2 | Hemeg HA. Nanomaterials for alternative antibacterial therapy[J]. Int J Nanomedicine, 2017, 12: 8211-8225. |
3 | Rizvi SMD, Hussain T, Ahmed ABF, et al. Gold nanoparticles: a plausible tool to combat neurological bacterial infections in humans[J]. Biomed Pharmacother, 2018, 107: 7-18. |
4 | Ford CA, Cassat JE. Advances in the local and targeted delivery of anti-infective agents for management of osteomyelitis[J]. Expert Rev Anti Infect Ther, 2017, 15(9): 851-860. |
5 | Wang C, Wang YL, Zhang LL, et al. Pretreated macrophage-membrane-coated gold nanocages for precise drug delivery for treatment of bacterial infections[J]. Adv Mater, 2018, 30(46): e1804023. |
6 | Wang KY, Lei YT, Xia DL, et al. Neutrophil membranes coated, antibiotic agent loaded nanoparticles targeting to the lung inflammation[J]. Colloids Surfaces B: Biointerfaces, 2020, 188: 110755. |
7 | Fulaz S, Vitale S, Quinn L, et al. Nanoparticle-biofilm interactions: the role of the EPS matrix[J]. Trends Microbiol, 2019, 27(11): 915-926. |
8 | Zou SJ, Wang BL, Wang C, et al. Cell membrane-coated nanoparticles: research advances[J]. Nanomedicine (Lond), 2020, 15(6): 625-641. |
9 | Li JX, Angsantikul P, Liu WJ, et al. Biomimetic platelet-camouflaged nanorobots for binding and isolation of biological threats[J]. Adv Mater, 2018, 30(2). DOI: 10.1002/adma.201704800. |
10 | Esteban-Fernández de ávila B, Angsantikul P, Ramírez-Herrera DE, et al. Hybrid biomembrane-functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins[J]. Sci Robot, 2018, 3(18): eaat0485. |
11 | Qin M, Du GS, Sun X. Biomimetic cell-derived nanocarriers for modulating immune responses[J]. Biomater Sci, 2020, 8(2): 530-543. |
12 | Choi B, Park W, Park SB, et al. Recent trends in cell membrane-cloaked nanoparticles for therapeutic applications[J]. Methods, 2020, 177: 2-14. |
13 | Hu CM, Fang RH, Wang KC, et al. Nanoparticle biointerfacing by platelet membrane cloaking[J]. Nature, 2015, 526(7571): 118-121. |
14 | Copp JA, Fang RH, Luk BT, et al. Clearance of pathological antibodies using biomimetic nanoparticles[J]. PNAS, 2014, 111(37): 13481-13486. |
15 | Gao W, Fang RH, Thamphiwatana S, et al. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles[J]. Nano Lett, 2015, 15(2): 1403-1409. |
16 | Wang S, Gao J, Li M, et al. A facile approach for development of a vaccine made of bacterial double-layered membrane vesicles (DMVs)[J]. Biomaterials, 2018, 187: 28-38. |
17 | Cao HQ, Dan ZL, He XY, et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer[J]. ACS Nano, 2016, 10(8): 7738-7748. |
18 | Gao C, Lin Z, Jurado-Sánchez B, et al. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery[J]. Small, 2016, 12(30): 4056-4062. |
19 | Ai X, Hu M, Wang Z, et al. Recent advances of membrane-cloaked nanoplatforms for biomedical applications[J]. Bioconjug Chem, 2018, 29(4): 838-851. |
20 | Rao L, Cai B, Bu LL, et al. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy[J]. ACS Nano, 2017, 11(4): 3496-3505. |
21 | Zhang J, Gao W, Fang RH, et al. Synthesis of nanogels via cell membrane-templated polymerization[J]. Small, 2015, 11(34): 4309-4313. |
22 | Hu CM, Zhang L, Aryal S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform[J]. PNAS, 2011, 108(27): 10980-10985. |
23 | Wei XL, Ran DN, Campeau A, et al. Multiantigenic nanotoxoids for antivirulence vaccination against antibiotic-resistant gram-negative bacteria[J]. Nano Lett, 2019, 19(7): 4760-4769. |
24 | Shen S, Han F, Yuan AR, et al. Engineered nanoparticles disguised as macrophages for trapping lipopolysaccharide and preventing endotoxemia[J]. Biomaterials, 2019, 189: 60-68. |
25 | Dehaini D, Wei XL, Fang RH, et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization[J]. Adv Mater, 2017, 29(16): 1606209. |
26 | Gao F, Xu LL, Yang BQ, et al. Kill the real with the fake: eliminate intracellular Staphylococcus aureus using nanoparticle coated with its extracellular vesicle membrane as active-targeting drug carrier[J]. ACS Infect Dis, 2019, 5(2): 218-227. |
27 | Pang X, Liu X, Cheng Y, et al. Sono-immunotherapeutic nanocapturer to combat multidrug-resistant bacterial infections[J]. Adv Mater, 2019, 31(35): e1902530. |
28 | Lin LC, Chattopadhyay S, Lin JC, et al. Advances and opportunities in nanoparticle- and nanomaterial-based vaccines against bacterial infections[J]. Adv Healthc Mater, 2018, 7(13): e1701395. |
29 | Rao L, Tian R, Chen XY. Cell-membrane-mimicking nanodecoys against infectious diseases[J]. ACS Nano, 2020, 14(3): 2569-2574. |
30 | Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity[J]. Immunity, 2011, 34(5): 637-650. |
31 | Fitzgerald JR, Foster TJ, Cox D. The interaction of bacterial pathogens with platelets[J]. Nat Rev Microbiol, 2006, 4(6): 445-457. |
32 | Spaan AN, Surewaard BG, Nijland R, et al. Neutrophils versus Staphylococcus aureus: a biological tug of war[J]. Annu Rev Microbiol, 2013, 67: 629-650. |
33 | Garzoni C, Kelley WL. Return of the Trojan horse: intracellular phenotype switching and immune evasion by Staphylococcus aureus[J]. EMBO Mol Med, 2011, 3(3): 115-117. |
34 | Lehar SM, Pillow T, Xu M, et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus[J]. Nature, 2015, 527(7578): 323-328. |
35 | Thwaites GE, Gant V. Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus?[J]. Nat Rev Microbiol, 2011, 9(3): 215-222. |
36 | Dong XY, Zhang CY, Gao J, et al. Targeting of nanotherapeutics to infection sites for antimicrobial therapy[J]. Adv Ther, 2019, 2(11): 1900095. |
37 | Azzopardi EA, Ferguson EL, Thomas DW. The enhanced permeability retention effect: a new paradigm for drug targeting in infection[J]. J Antimicrob Chemother, 2013, 68(2): 257-274. |
38 | Zhang CY, Gao J, Wang ZJ. Bioresponsive nanoparticles targeted to infectious microenvironments for sepsis management[J]. Adv Mater, 2018, 30(43): e1803618. |
39 | Chu D, Dong X, Shi X, et al. Neutrophil-based drug delivery systems[J]. Adv Mater, 2018, 30(22): e1706245. |
40 | Li LL, Xu JH, Qi GB, et al. Core-shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic delivery[J]. ACS Nano, 2014, 8(5): 4975-4983. |
41 | Yan HZ, Shao D, Lao YH, et al. Engineering cell membrane-based nanotherapeutics to target inflammation[J]. Adv Sci (Weinh), 2019, 6(15): 1900605. |
42 | Thamphiwatana S, Angsantikul P, Escajadillo T, et al. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management[J]. Proc Natl Acad Sci USA, 2017, 114(43): 11488-11493. |
43 | Wang F, Fang RH, Luk BT, et al. Nanoparticle-based antivirulence vaccine for the management of methicillin-resistant Staphylococcus aureus skin infection[J]. Adv Funct Mater, 2016, 26(10): 1628-1635. |
44 | Hu CM, Fang RH, Luk BT, et al. Nanoparticle-detained toxins for safe and effective vaccination[J]. Nat Nanotechnol, 2013, 8(12): 933-938. |
45 | Wei XL, Gao J, Wang F, et al. In situ capture of bacterial toxins for antivirulence vaccination[J]. Adv Mater, 2017, 29(33): 1701644. |
/
〈 |
|
〉 |