1 |
Mi G, Shi D, Wang M, et al. Reducing bacterial infections and biofilm formation using nanoparticles and nanostructured antibacterial surfaces[J]. Adv Healthc Mater, 2018, 7(13): e1800103.
|
2 |
Hemeg HA. Nanomaterials for alternative antibacterial therapy[J]. Int J Nanomedicine, 2017, 12: 8211-8225.
|
3 |
Rizvi SMD, Hussain T, Ahmed ABF, et al. Gold nanoparticles: a plausible tool to combat neurological bacterial infections in humans[J]. Biomed Pharmacother, 2018, 107: 7-18.
|
4 |
Ford CA, Cassat JE. Advances in the local and targeted delivery of anti-infective agents for management of osteomyelitis[J]. Expert Rev Anti Infect Ther, 2017, 15(9): 851-860.
|
5 |
Wang C, Wang YL, Zhang LL, et al. Pretreated macrophage-membrane-coated gold nanocages for precise drug delivery for treatment of bacterial infections[J]. Adv Mater, 2018, 30(46): e1804023.
|
6 |
Wang KY, Lei YT, Xia DL, et al. Neutrophil membranes coated, antibiotic agent loaded nanoparticles targeting to the lung inflammation[J]. Colloids Surfaces B: Biointerfaces, 2020, 188: 110755.
|
7 |
Fulaz S, Vitale S, Quinn L, et al. Nanoparticle-biofilm interactions: the role of the EPS matrix[J]. Trends Microbiol, 2019, 27(11): 915-926.
|
8 |
Zou SJ, Wang BL, Wang C, et al. Cell membrane-coated nanoparticles: research advances[J]. Nanomedicine (Lond), 2020, 15(6): 625-641.
|
9 |
Li JX, Angsantikul P, Liu WJ, et al. Biomimetic platelet-camouflaged nanorobots for binding and isolation of biological threats[J]. Adv Mater, 2018, 30(2). DOI: 10.1002/adma.201704800.
|
10 |
Esteban-Fernández de Ávila B, Angsantikul P, Ramírez-Herrera DE, et al. Hybrid biomembrane-functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins[J]. Sci Robot, 2018, 3(18): eaat0485.
|
11 |
Qin M, Du GS, Sun X. Biomimetic cell-derived nanocarriers for modulating immune responses[J]. Biomater Sci, 2020, 8(2): 530-543.
|
12 |
Choi B, Park W, Park SB, et al. Recent trends in cell membrane-cloaked nanoparticles for therapeutic applications[J]. Methods, 2020, 177: 2-14.
|
13 |
Hu CM, Fang RH, Wang KC, et al. Nanoparticle biointerfacing by platelet membrane cloaking[J]. Nature, 2015, 526(7571): 118-121.
|
14 |
Copp JA, Fang RH, Luk BT, et al. Clearance of pathological antibodies using biomimetic nanoparticles[J]. PNAS, 2014, 111(37): 13481-13486.
|
15 |
Gao W, Fang RH, Thamphiwatana S, et al. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles[J]. Nano Lett, 2015, 15(2): 1403-1409.
|
16 |
Wang S, Gao J, Li M, et al. A facile approach for development of a vaccine made of bacterial double-layered membrane vesicles (DMVs)[J]. Biomaterials, 2018, 187: 28-38.
|
17 |
Cao HQ, Dan ZL, He XY, et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer[J]. ACS Nano, 2016, 10(8): 7738-7748.
|
18 |
Gao C, Lin Z, Jurado-Sánchez B, et al. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery[J]. Small, 2016, 12(30): 4056-4062.
|
19 |
Ai X, Hu M, Wang Z, et al. Recent advances of membrane-cloaked nanoplatforms for biomedical applications[J]. Bioconjug Chem, 2018, 29(4): 838-851.
|
20 |
Rao L, Cai B, Bu LL, et al. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy[J]. ACS Nano, 2017, 11(4): 3496-3505.
|
21 |
Zhang J, Gao W, Fang RH, et al. Synthesis of nanogels via cell membrane-templated polymerization[J]. Small, 2015, 11(34): 4309-4313.
|
22 |
Hu CM, Zhang L, Aryal S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform[J]. PNAS, 2011, 108(27): 10980-10985.
|
23 |
Wei XL, Ran DN, Campeau A, et al. Multiantigenic nanotoxoids for antivirulence vaccination against antibiotic-resistant gram-negative bacteria[J]. Nano Lett, 2019, 19(7): 4760-4769.
|
24 |
Shen S, Han F, Yuan AR, et al. Engineered nanoparticles disguised as macrophages for trapping lipopolysaccharide and preventing endotoxemia[J]. Biomaterials, 2019, 189: 60-68.
|
25 |
Dehaini D, Wei XL, Fang RH, et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization[J]. Adv Mater, 2017, 29(16): 1606209.
|
26 |
Gao F, Xu LL, Yang BQ, et al. Kill the real with the fake: eliminate intracellular Staphylococcus aureus using nanoparticle coated with its extracellular vesicle membrane as active-targeting drug carrier[J]. ACS Infect Dis, 2019, 5(2): 218-227.
|
27 |
Pang X, Liu X, Cheng Y, et al. Sono-immunotherapeutic nanocapturer to combat multidrug-resistant bacterial infections[J]. Adv Mater, 2019, 31(35): e1902530.
|
28 |
Lin LC, Chattopadhyay S, Lin JC, et al. Advances and opportunities in nanoparticle- and nanomaterial-based vaccines against bacterial infections[J]. Adv Healthc Mater, 2018, 7(13): e1701395.
|
29 |
Rao L, Tian R, Chen XY. Cell-membrane-mimicking nanodecoys against infectious diseases[J]. ACS Nano, 2020, 14(3): 2569-2574.
|
30 |
Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity[J]. Immunity, 2011, 34(5): 637-650.
|
31 |
Fitzgerald JR, Foster TJ, Cox D. The interaction of bacterial pathogens with platelets[J]. Nat Rev Microbiol, 2006, 4(6): 445-457.
|
32 |
Spaan AN, Surewaard BG, Nijland R, et al. Neutrophils versus Staphylococcus aureus: a biological tug of war[J]. Annu Rev Microbiol, 2013, 67: 629-650.
|
33 |
Garzoni C, Kelley WL. Return of the Trojan horse: intracellular phenotype switching and immune evasion by Staphylococcus aureus[J]. EMBO Mol Med, 2011, 3(3): 115-117.
|
34 |
Lehar SM, Pillow T, Xu M, et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus[J]. Nature, 2015, 527(7578): 323-328.
|
35 |
Thwaites GE, Gant V. Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus?[J]. Nat Rev Microbiol, 2011, 9(3): 215-222.
|
36 |
Dong XY, Zhang CY, Gao J, et al. Targeting of nanotherapeutics to infection sites for antimicrobial therapy[J]. Adv Ther, 2019, 2(11): 1900095.
|
37 |
Azzopardi EA, Ferguson EL, Thomas DW. The enhanced permeability retention effect: a new paradigm for drug targeting in infection[J]. J Antimicrob Chemother, 2013, 68(2): 257-274.
|
38 |
Zhang CY, Gao J, Wang ZJ. Bioresponsive nanoparticles targeted to infectious microenvironments for sepsis management[J]. Adv Mater, 2018, 30(43): e1803618.
|
39 |
Chu D, Dong X, Shi X, et al. Neutrophil-based drug delivery systems[J]. Adv Mater, 2018, 30(22): e1706245.
|
40 |
Li LL, Xu JH, Qi GB, et al. Core-shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic delivery[J]. ACS Nano, 2014, 8(5): 4975-4983.
|
41 |
Yan HZ, Shao D, Lao YH, et al. Engineering cell membrane-based nanotherapeutics to target inflammation[J]. Adv Sci (Weinh), 2019, 6(15): 1900605.
|
42 |
Thamphiwatana S, Angsantikul P, Escajadillo T, et al. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management[J]. Proc Natl Acad Sci USA, 2017, 114(43): 11488-11493.
|
43 |
Wang F, Fang RH, Luk BT, et al. Nanoparticle-based antivirulence vaccine for the management of methicillin-resistant Staphylococcus aureus skin infection[J]. Adv Funct Mater, 2016, 26(10): 1628-1635.
|
44 |
Hu CM, Fang RH, Luk BT, et al. Nanoparticle-detained toxins for safe and effective vaccination[J]. Nat Nanotechnol, 2013, 8(12): 933-938.
|
45 |
Wei XL, Gao J, Wang F, et al. In situ capture of bacterial toxins for antivirulence vaccination[J]. Adv Mater, 2017, 29(33): 1701644.
|