综述

嵌合抗原受体T细胞疗法在胶质母细胞瘤中的应用与展望

  • 那迪娜·帕尔哈提null ,
  • 严妍 ,
  • 车千纪 ,
  • 罗菁 ,
  • 刘鑫男 ,
  • 李斌
展开
  • 上海交通大学医学院上海市免疫学研究所,上海 200025
那迪娜·帕尔哈提(1998—),女,哈萨克族,本科生;电子信箱:nadina@sjtu.edu.cn

网络出版日期: 2021-08-03

基金资助

上海交通大学医学院第十三期大学生创新项目(1319003)

Application and prospect of chimeric antigen receptor-modified T cell therapy for glioblastoma

  • Paerhati NADINA ,
  • Yan YAN ,
  • Qian-ji CHE ,
  • Jing LUO ,
  • Xin-nan LIU ,
  • Bin LI
Expand
  • Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

Online published: 2021-08-03

Supported by

The 13th Innovation Project of Shanghai Jiao Tong University School of Medicine(1319003)

摘要

胶质母细胞瘤是成人最常见且最致命的肿瘤之一,由于其进展迅速、侵袭性强和血脑屏障的存在,胶质母细胞瘤的治疗有别于其他实体肿瘤,常规治疗预后欠佳。使用免疫疗法治疗胶质母细胞瘤的探索已经持续了几十年,效果也欠佳。但随着胶质母细胞瘤特异性抗原的研究进展、各项相关技术的发展以及早期临床试验的成功,免疫疗法又回到了人们的视线中。嵌合抗原受体T细胞(chimeric antigen receptor-modified T cell,CAR-T)治疗是一种新兴的肿瘤免疫疗法。该文回顾既往文献,总结了一些可用于CAR-T疗法治疗胶质母细胞瘤的相关抗原,并总结了CAR-T疗法治疗胶质母细胞瘤在内的实体肿瘤所面临的问题和挑战,包括肿瘤微环境中存在的T细胞耗竭、肿瘤的异质性、归巢率低等,对CAR-T疗法改进方案等进行综述。

本文引用格式

那迪娜·帕尔哈提null , 严妍 , 车千纪 , 罗菁 , 刘鑫男 , 李斌 . 嵌合抗原受体T细胞疗法在胶质母细胞瘤中的应用与展望[J]. 上海交通大学学报(医学版), 2021 , 41(7) : 982 -986 . DOI: 10.3969/j.issn.1674-8115.2021.07.023

Abstract

Glioblastoma is one of the most common and deadly neoplasms in adults. The rapid progress and strong invasiveness of glioblastoma and the presence of the blood-brain barrier make the treatment of glioblastoma different from other solid tumors and these are the reasons for the poor prognosis of conventional treatment. The exploration of immunotherapy in the treatment of glioblastoma has lasted for decades, but the outcome is not good yet. However, with the research progress of glioblastoma-specific antigen, the development of various related technologies and the success of early clinical trials, it has come back to people's attention. Chimeric antigen receptor-modified T cell(CAR-T) is a new kind of tumor immunotherapy. Reviewing the previous literatures, this article summarizes some related antigens that can be used to CAR-T therapy to treat glioblastoma, the problems and challenges faced by CAR-T therapy in the treatment of glioblastoma and other solid tumors, including T cell depletion in tumor microenvironment, heterogeneity of tumor and low homing rate, and some potential improvements in CAR-T therapy.

参考文献

1 Wirsching HG, Galanis E, Weller M. Glioblastoma[J]. Handb Clin Neurol, 2016, 134: 381.
2 Stepanenko AA, Chekhonin VP. Recent advances in oncolytic virotherapy and immunotherapy for glioblastoma: a glimmer of hope in the search for an effective therapy?[J]. Cancers (Basel), 2018, 10(12): E492.
3 Xie ZQ, Janczyk P?, Zhang Y, et al. A cytoskeleton regulator AVIL drives tumorigenesis in glioblastoma[J]. Nat Commun, 2020, 11(1): 3457.
4 Wang DR, Starr R, Chang WC, et al. Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma[J]. Sci Transl Med, 2020, 12(533): eaaw2672.
5 Felsberg J, Hentschel B, Kaulich K, et al. Epidermal growth factor receptor variant Ⅲ (EGFRvⅢ) positivity in EGFR-amplified glioblastomas: prognostic role and comparison between primary and recurrent tumors[J]. Clin Cancer Res, 2017, 23(22): 6846-6855.
6 Bielamowicz K, Fousek K, Byrd TT, et al. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma[J]. Neuro Oncol, 2018, 20(4): 506-518.
7 Eskilsson E, R?sland GV, Solecki G, et al. EGFR heterogeneity and implications for therapeutic intervention in glioblastoma[J]. Neuro Oncol, 2018, 20(6): 743-752.
8 Milner JJ, Toma C, Yu BF, et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours[J]. Nature, 2017, 552(7684): 253-257.
9 Caruana I, Savoldo B, Hoyos V, et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes[J]. Nat Med, 2015, 21(5): 524-529.
10 Hao CH, Parney IF, Roa WH, et al. Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation[J]. Acta Neuropathol, 2002, 103(2): 171-178.
11 Martinez M, Moon EK. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment[J]. Front Immunol, 2019, 10: 128.
12 Jacobs JF, Idema AJ, Bol KF, et al. Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors[J]. Neuro Oncol, 2009, 11(4): 394-402.
13 Mirzaei R, Sarkar S, Yong VW. T cell exhaustion in glioblastoma: intricacies of immune checkpoints[J]. Trends Immunol, 2017, 38(2): 104-115.
14 Zhu CB, Mustafa D, Zheng PP, et al. Activation of CECR1 in M2-like TAMs promotes paracrine stimulation-mediated glial tumor progression[J]. Neuro Oncol, 2017, 19(5): 648-659.
15 Shi Y, Ping YF, Zhou WC, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth[J]. Nat Commun, 2017, 8: 15080.
16 Fitzgerald JC, Weiss SL, Maude SL, et al. Cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia[J]. Crit Care Med, 2017, 45(2): e124-e131.
17 Teachey DT, Lacey SF, Shaw PA, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia[J]. Cancer Discov, 2016, 6(6): 664-679.
18 O′Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally infused EGFRvⅢ-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma[J]. Sci Transl Med, 2017, 9(399): eaaa0984.
19 Howard SC, Trifilio S, Gregory TK, et al. Tumor lysis syndrome in the era of novel and targeted agents in patients with hematologic malignancies: a systematic review[J]. Ann Hematol, 2016, 95(4): 563-573.
20 Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia[J]. N Engl J Med, 2014, 371(16): 1507-1517.
21 Hay KA. Cytokine release syndrome and neurotoxicity after CD19 chimeric antigen receptor-modified (CAR-) T cell therapy[J]. Br J Haematol, 2018, 183(3): 364-374.
22 Hamieh M, Dobrin A, Cabriolu A, et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape[J]. Nature, 2019, 568(7750): 112-116.
23 Chen J, López-Moyado IF, Seo H, et al. NR4A transcription factors limit CAR T cell function in solid tumours[J]. Nature, 2019, 567(7749): 530-534.
24 Santoro SP, Kim S, Motz GT, et al. T cells bearing a chimeric antigen receptor against prostate-specific membrane antigen mediate vascular disruption and result in tumor regression[J]. Cancer Immunol Res, 2015, 3(1): 68-84.
25 Deng CW, Zhao JJ, Zhou SX, et al. The vascular disrupting agent CA4P improves the antitumor efficacy of CAR-T cells in preclinical models of solid human tumors[J]. Mol Ther, 2020, 28(1): 75-88.
26 Schmidts A, Maus MV. Making CAR T cells a solid option for solid tumors[J]. Front Immunol, 2018, 9: 2593.
27 Hegde M, Mukherjee M, Grada Z, et al. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape[J]. J Clin Invest, 2019, 129(8): 3464.
28 Borriello L, Nakata R, Sheard MA, et al. Cancer-associated fibroblasts share characteristics and protumorigenic activity with mesenchymal stromal cells[J]. Cancer Res, 2017, 77(18): 5142-5157.
29 Kloss CC, Lee J, Zhang A, et al. Dominant-negative TGF?β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication[J]. Mol Ther, 2018, 26(7): 1855-1866.
30 Liu XJ, Ranganathan R, Jiang SG, et al. A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors[J]. Cancer Res, 2016, 76(6): 1578-1590.
31 Li YX, Xiao FJ, Zhang AM, et al. Oncolytic adenovirus targeting TGF?β enhances anti-tumor responses of mesothelin-targeted chimeric antigen receptor T cell therapy against breast cancer[J]. Cell Immunol, 2020, 348: 104041.
32 Jin L, Tao H, Karachi A, et al. CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors[J]. Nat Commun, 2019, 10(1): 4016.
33 Craddock JA, Lu A, Bear A, et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b[J]. J Immunother, 2010, 33(8): 780-788.
34 Giordano-Attianese G, Gainza P, Gray-Gaillard E, et al. A computationally designed chimeric antigen receptor provides a small-molecule safety switch for T-cell therapy[J]. Nat Biotechnol, 2020, 38(4): 426-432.
文章导航

/