1 |
Wirsching HG, Galanis E, Weller M. Glioblastoma[J]. Handb Clin Neurol, 2016, 134: 381.
|
2 |
Stepanenko AA, Chekhonin VP. Recent advances in oncolytic virotherapy and immunotherapy for glioblastoma: a glimmer of hope in the search for an effective therapy?[J]. Cancers (Basel), 2018, 10(12): E492.
|
3 |
Xie ZQ, Janczyk PŁ, Zhang Y, et al. A cytoskeleton regulator AVIL drives tumorigenesis in glioblastoma[J]. Nat Commun, 2020, 11(1): 3457.
|
4 |
Wang DR, Starr R, Chang WC, et al. Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma[J]. Sci Transl Med, 2020, 12(533): eaaw2672.
|
5 |
Felsberg J, Hentschel B, Kaulich K, et al. Epidermal growth factor receptor variant Ⅲ (EGFRvⅢ) positivity in EGFR-amplified glioblastomas: prognostic role and comparison between primary and recurrent tumors[J]. Clin Cancer Res, 2017, 23(22): 6846-6855.
|
6 |
Bielamowicz K, Fousek K, Byrd TT, et al. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma[J]. Neuro Oncol, 2018, 20(4): 506-518.
|
7 |
Eskilsson E, Røsland GV, Solecki G, et al. EGFR heterogeneity and implications for therapeutic intervention in glioblastoma[J]. Neuro Oncol, 2018, 20(6): 743-752.
|
8 |
Milner JJ, Toma C, Yu BF, et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours[J]. Nature, 2017, 552(7684): 253-257.
|
9 |
Caruana I, Savoldo B, Hoyos V, et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes[J]. Nat Med, 2015, 21(5): 524-529.
|
10 |
Hao CH, Parney IF, Roa WH, et al. Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation[J]. Acta Neuropathol, 2002, 103(2): 171-178.
|
11 |
Martinez M, Moon EK. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment[J]. Front Immunol, 2019, 10: 128.
|
12 |
Jacobs JF, Idema AJ, Bol KF, et al. Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors[J]. Neuro Oncol, 2009, 11(4): 394-402.
|
13 |
Mirzaei R, Sarkar S, Yong VW. T cell exhaustion in glioblastoma: intricacies of immune checkpoints[J]. Trends Immunol, 2017, 38(2): 104-115.
|
14 |
Zhu CB, Mustafa D, Zheng PP, et al. Activation of CECR1 in M2-like TAMs promotes paracrine stimulation-mediated glial tumor progression[J]. Neuro Oncol, 2017, 19(5): 648-659.
|
15 |
Shi Y, Ping YF, Zhou WC, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth[J]. Nat Commun, 2017, 8: 15080.
|
16 |
Fitzgerald JC, Weiss SL, Maude SL, et al. Cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia[J]. Crit Care Med, 2017, 45(2): e124-e131.
|
17 |
Teachey DT, Lacey SF, Shaw PA, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia[J]. Cancer Discov, 2016, 6(6): 664-679.
|
18 |
O′Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally infused EGFRvⅢ-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma[J]. Sci Transl Med, 2017, 9(399): eaaa0984.
|
19 |
Howard SC, Trifilio S, Gregory TK, et al. Tumor lysis syndrome in the era of novel and targeted agents in patients with hematologic malignancies: a systematic review[J]. Ann Hematol, 2016, 95(4): 563-573.
|
20 |
Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia[J]. N Engl J Med, 2014, 371(16): 1507-1517.
|
21 |
Hay KA. Cytokine release syndrome and neurotoxicity after CD19 chimeric antigen receptor-modified (CAR-) T cell therapy[J]. Br J Haematol, 2018, 183(3): 364-374.
|
22 |
Hamieh M, Dobrin A, Cabriolu A, et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape[J]. Nature, 2019, 568(7750): 112-116.
|
23 |
Chen J, López-Moyado IF, Seo H, et al. NR4A transcription factors limit CAR T cell function in solid tumours[J]. Nature, 2019, 567(7749): 530-534.
|
24 |
Santoro SP, Kim S, Motz GT, et al. T cells bearing a chimeric antigen receptor against prostate-specific membrane antigen mediate vascular disruption and result in tumor regression[J]. Cancer Immunol Res, 2015, 3(1): 68-84.
|
25 |
Deng CW, Zhao JJ, Zhou SX, et al. The vascular disrupting agent CA4P improves the antitumor efficacy of CAR-T cells in preclinical models of solid human tumors[J]. Mol Ther, 2020, 28(1): 75-88.
|
26 |
Schmidts A, Maus MV. Making CAR T cells a solid option for solid tumors[J]. Front Immunol, 2018, 9: 2593.
|
27 |
Hegde M, Mukherjee M, Grada Z, et al. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape[J]. J Clin Invest, 2019, 129(8): 3464.
|
28 |
Borriello L, Nakata R, Sheard MA, et al. Cancer-associated fibroblasts share characteristics and protumorigenic activity with mesenchymal stromal cells[J]. Cancer Res, 2017, 77(18): 5142-5157.
|
29 |
Kloss CC, Lee J, Zhang A, et al. Dominant-negative TGF‑β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication[J]. Mol Ther, 2018, 26(7): 1855-1866.
|
30 |
Liu XJ, Ranganathan R, Jiang SG, et al. A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors[J]. Cancer Res, 2016, 76(6): 1578-1590.
|
31 |
Li YX, Xiao FJ, Zhang AM, et al. Oncolytic adenovirus targeting TGF‑β enhances anti-tumor responses of mesothelin-targeted chimeric antigen receptor T cell therapy against breast cancer[J]. Cell Immunol, 2020, 348: 104041.
|
32 |
Jin L, Tao H, Karachi A, et al. CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors[J]. Nat Commun, 2019, 10(1): 4016.
|
33 |
Craddock JA, Lu A, Bear A, et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b[J]. J Immunother, 2010, 33(8): 780-788.
|
34 |
Giordano-Attianese G, Gainza P, Gray-Gaillard E, et al. A computationally designed chimeric antigen receptor provides a small-molecule safety switch for T-cell therapy[J]. Nat Biotechnol, 2020, 38(4): 426-432.
|