网络出版日期: 2021-09-03
基金资助
国家自然科学基金面上项目(81974406)
Classification and treatment progress of MMRd-related endometrial cancer
Online published: 2021-09-03
Supported by
National Natural Science Foundation of China(81974406)
子宫内膜癌(endometrial carcinoma,EC)是异质性很强的妇科恶性肿瘤,根据最新的分子分型EC分为错配修复基因缺陷(mismatch repair deficiency,MMRd)相关EC和非MMRd相关EC。而MMRd相关EC又根据突变的特征分为3个亚型:MLH1高度甲基化型EC(MLH1-hypermethylationged EC,EC-met)、林奇综合征相关EC(Lynch syndrome associated EC,EC-ls)和体细胞MMR相关致病基因的等位基因双突变型EC(mismatch repair gene double somatic variants,EC-dspv)。3个亚型内膜癌的发病机制不同,临床特征也有很大的差异,必须根据临床特征及免疫学特征加以区别,以采取不同的精准化治疗策略。该文综述MMRd相关EC的分型,对3个亚型和无错配修复基因缺陷(mismatch repair proficiency,MMRp)的EC进行临床特征、免疫特征等方面的比较,并介绍MMRd治疗及预后相关的研究及临床试验。
殷倩 , 滕银成 . MMRd相关子宫内膜癌分型及治疗进展[J]. 上海交通大学学报(医学版), 2021 , 41(11) : 1509 -1513 . DOI: 10.3969/j.issn.1674-8115.2021.11.016
Endometrial carcinoma is a very heterogeneous gynecological cancer. According to the latest molecular classification, endometrial carcinoma is divided into mismatch repair deficiency (MMRd)-related EC and non-MMRd-related EC. And MMRd-related EC is divided into three subtypes according to the characteristics of mutation: MLH1-hypermethylationged endometrial carcinoma (EC-met); Lynch syndrome-related endometrial carcinoma (EC-ls) and mismatch repair gene double somatic variants (EC-dspv). The three subtypes of EC have different pathogenesis and clinical characteristics. Therefore, they must be distinguished according to clinical and immunological characteristics in order to adopt precise treatments. This article mainly introduces the classification of MMRd-related endometrial carcinoma, and compares the three subtypes with the mismatch repair proficiency (MMRp) of EC in terms of clinical and immune features. Finally, this review introduces recent researches and clinical trials related to the treatment and prognosis of MMR.
Key words: endometrial cancer; mismatch repair deficiency (MMRd); MLH1
1 | Lortet-Tieulent J, Ferlay J, Bray F, et al. International patterns and trends in endometrial cancer incidence, 1978-2013[J]. J Natl Cancer Inst, 2018, 110(4): 354-361. |
2 | Eikenboom EL, van Doorn HC, Dinjens WNM, et al. Gynecological surveillance and surgery outcomes in Dutch lynch syndrome carriers[J]. Cancers, 2021, 13(3): 459. |
3 | Gordhandas S, Kahn RM, Gamble C, et al. Clinicopathologic features of endometrial cancer with mismatch repair deficiency[J]. Ecancermedicalscience, 2020, 14: 1061. |
4 | Buchanan DD, Tan YY, Walsh MD, et al. Tumor mismatch repair immunohistochemistry and DNA MLH1 methylation testing of patients with endometrial cancer diagnosed at age younger than 60 years optimizes triage for population-level germline mismatch repair gene mutation testing[J]. J Clin Oncol, 2014, 32(2): 90-100. |
5 | Hampel H, Pearlman R, de la Chapelle A, et al. Double somatic mismatch repair gene pathogenic variants as common as Lynch syndrome among endometrial cancer patients[J]. Gynecol Oncol, 2021, 160(1): 161-168. |
6 | Poulogiannis G, Frayling IM, Arends MJ. DNA mismatch repair deficiency in sporadic colorectal cancer and Lynch syndrome[J]. Histopathology, 2010, 56(2): 167-179. |
7 | Zhang H,Richards B,Wilson T,et al. Apoptosis induced by overexpression of hMSH2 or hMLH1[J].Cancer Res,1999,59(13):3021-3027. |
8 | Cerretelli G, Ager A, Arends MJ, et al. Molecular pathology of Lynch syndrome[J]. J Pathol, 2020, 250(5): 518-531. |
9 | ACOG Practice bulletin no. 147[J]. Obstet Gynecol, 2014, 124(5): 1042-1054. |
10 | Carvalho JP, Del Giglio A, Achatz MI, et al. Complete clinical response in stage IVB endometrioid endometrial carcinoma after first-line pembrolizumab therapy: report of a case with isolated loss of PMS2 protein[J]. Case Rep Oncol, 2020, 13(3): 1067-1074. |
11 | Mas-Moya J, Dudley B, Brand RE, et al. Clinicopathological comparison of colorectal and endometrial carcinomas in patients with Lynch-like syndrome versus patients with Lynch syndrome[J]. Hum Pathol, 2015, 46(11): 1616-1625. |
12 | Chika N, Eguchi H, Kumamoto K, et al. Prevalence of Lynch syndrome and Lynch-like syndrome among patients with colorectal cancer in a Japanese hospital-based population[J]. Jpn J Clin Oncol, 2017, 47(2): 191. |
13 | Zhang K, Liu Y, Liu X, et al. Clinicopathological significance of multiple molecular features in undifferentiated and dedifferentiated endometrial carcinomas[J]. Pathology, 2021, 53(2): 179-186. |
14 | Cancer Genome Atlas Research Network, Kandoth C, Schultz N, et al. Integrated genomic characterization of endometrial carcinoma[J]. Nature, 2013, 497(7447): 67-73. |
15 | Ono R, Nakayama K, Nakamura K, et al. Dedifferentiated endometrial carcinoma could be A target for immune checkpoint inhibitors (anti PD-1/PD-L1 antibodies)[J]. Int J Mol Sci, 2019, 20(15). |
16 | Conlon N, Da Cruz Paula A, Ashley CW, et al. Endometrial carcinomas with a ? ?serous'' component in young women are enriched for DNA mismatch repair deficiency, lynch syndrome, and POLE exonuclease domain mutations[J]. Am J Surg Pathol, 2020, 44(5): 641-648. |
17 | Pasanen A, Loukovaara M, Bützow R. Clinicopathological significance of deficient DNA mismatch repair and MLH1 promoter methylation in endometrioid endometrial carcinoma[J]. Mod Pathol, 2020, 33(7): 1443-1452. |
18 | Doulgeraki T,Vagios S,Kavoura E,et al. Mismatch repair status in high-grade endometrial carcinomas of endimetrioid and non-endometrioid type[J].J BUON,2019,24(5):2020-2027. |
19 | Kim SR, Tone A, Kim RH, et al. Understanding the clinical implication of mismatch repair deficiency in endometrioid endometrial cancer through a prospective study[J]. Gynecol Oncol, 2021, 161(1): 221-227. |
20 | Maby P, Tougeron D, Hamieh M, et al. Correlation between density of CD8+ T-cell infiltrate in microsatellite unstable colorectal cancers and frameshift mutations: a rationale for personalized immunotherapy[J]. Cancer Res, 2015, 75(17): 3446-3455. |
21 | Clendenning M, Huang A, Jayasekara H, et al. Somatic mutations of the coding microsatellites within the beta-2-microglobulin gene in mismatch repair-deficient colorectal cancers and adenomas[J]. Fam Cancer, 2018, 17(1): 91-100. |
22 | Seth S, Ager A, Arends MJ, et al. Lynch syndrome-cancer pathways, heterogeneity and immune escape[J]. J Pathol, 2018, 246(2): 129-133. |
23 | Mariya T, Kubo T, Hirohashi Y, et al. Less correlation between mismatch repair proteins deficiency and decreased expression of HLA class I molecules in endometrial carcinoma: a different propensity from colorectal cancer[J]. Med Mol Morphol, 2021, 54(1): 14-22. |
24 | Bohaumilitzky L, von Knebel Doeberitz M, Kloor M, et al. Implications of hereditary origin on the immune phenotype of mismatch repair-deficient cancers: systematic literature review[J]. J Clin Med, 2020, 9(6): 1741. |
25 | Ramchander NC, Ryan NAJ, Walker TDJ, et al. Distinct immunological landscapes characterize inherited and sporadic mismatch repair deficient endometrial cancer[J]. Front Immunol, 2019, 10: 3023. |
26 | Reijnen C, Küsters-Vandevelde HVN, Prinsen CF, et al. Mismatch repair deficiency as a predictive marker for response to adjuvant radiotherapy in endometrial cancer[J]. Gynecol Oncol, 2019, 154(1): 124-130. |
27 | León-Castillo A, de Boer SM, Powell ME, et al. Molecular classification of the PORTEC-3 trial for high-risk endometrial cancer: impact on prognosis and benefit from adjuvant therapy[J]. J Clin Oncol, 2020, 38(29): 3388-3397. |
28 | Howitt BE, Shukla SA, Sholl LM, et al. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1[J]. JAMA Oncol, 2015, 1(9): 1319-1323. |
29 | Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. N Engl J Med, 2015, 372(26): 2509-2520. |
30 | Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357(6349): 409-413. |
31 | Marabelle A, Le DT, Ascierto PA, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study[J]. J Clin Oncol, 2020, 38(1): 1-10. |
32 | Makker V, Rasco D, Vogelzang NJ, et al. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: an interim analysis of a multicentre, open-label, single-arm, phase 2 trial[J]. Lancet Oncol, 2019, 20(5): 711-718. |
33 | Ramos A, Fortin SAM, Melchert V, et al. Checkpoint inhibitor signatures across endometrial carcinoma histologic subtypes[J]. Gynecol Oncol, 2018, 149(3): 621. |
34 | Sloan EA, Ring KL, Willis BC, et al. PD-L1 expression in mismatch repair-deficient endometrial carcinomas, including lynch syndrome-associated and MLH1 promoter hypermethylated tumors[J]. Am J Surg Pathol, 2017, 41(3): 326-333. |
/
〈 |
|
〉 |