创新团队成果专栏

裂殖酵母Shelterin五元复合物的电镜结构研究

  • 鲁彦伽 ,
  • 孙虹 ,
  • 吴振芳 ,
  • 雷鸣
展开
  • 上海交通大学医学院附属第九人民医院上海精准医学研究院,上海 200125
鲁彦伽(1997—),女,硕士生;电子信箱:jocelyn-lu@sjtu.edu.cn
雷鸣,电子信箱:leim@shsmu.edu.cn

收稿日期: 2021-12-27

  网络出版日期: 2022-05-09

基金资助

国家重点研发计划(2018YFA0107004);国家自然科学基金(31930063)

Electron microscopic study of Shelterin quinary complex structure in fission yeast

  • Yanjia LU ,
  • Hong SUN ,
  • Zhenfang WU ,
  • Ming LEI
Expand
  • Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
LEI Ming, E-mail: leim@shsmu.edu.cn.

Received date: 2021-12-27

  Online published: 2022-05-09

Supported by

National Key R&D Program of China(2018YFA0107004);National Natural Science Foundation of China(31930063)

摘要

目的·通过电子显微镜(电镜)和负染技术分析裂殖酵母端粒结合蛋白质Shelterin五元复合物(Rap1-Poz1-Tpz1-Ccq1-Pot1)的三维结构。方法·利用大肠埃希菌表达系统在体外重组和表达带有组氨酸-小分子泛素相关修饰物蛋白(histidine-small ubiquitin related modifier,His-SUMO)和谷胱甘肽巯基转移酶(glutathione S-transferase,GST)纯化标签的目的蛋白质,通过两步亲和层析(镍离子金属螯合亲和层析、谷胱甘肽琼脂糖凝胶亲和层析)以及一步凝胶过滤层析(SuperoseTM6 10/300 GL)分离纯化目的蛋白质复合物。采用0.75%甲酸双氧铀对蛋白质样品进行染色,用120 kV透射电镜观察,放大倍数设置为92 000倍,收集颗粒分散性较好的负染照片。用EMAN2软件和Relion3.0软件,通过单颗粒重构技术研究裂殖酵母Shelterin复合物的三维结构,最后利用UCSF Chimera软件对裂殖酵母Shelterin复合物的重构模型进行分析。结果·经过两步亲和层析以及凝胶过滤层析获得纯度高、组分齐、均一性良好的重组裂殖酵母Shelterin五元复合物的蛋白质样品;利用120 kV透射电镜获得负染电镜照片83张,从中挑选18 659个蛋白质复合物颗粒进行三维模型构建,初步解析了该复合物的三维结构;将重构模型与已报道的蛋白质组分的高分辨率结构进行分子对接,确定各组分在复合物中的定位情况,揭示该复合物以二聚体的形式存在。结论·构建了裂殖酵母Shelterin五元复合物(Rap1-Poz1-Tpz1-Ccq1-Pot1)的低分辨率的三维模型。

本文引用格式

鲁彦伽 , 孙虹 , 吴振芳 , 雷鸣 . 裂殖酵母Shelterin五元复合物的电镜结构研究[J]. 上海交通大学学报(医学版), 2022 , 42(3) : 290 -297 . DOI: 10.3969/j.issn.1674-8115.2022.03.005

Abstract

Objective

·To study the structure of the Shelterin quinary complex (Rap1-Poz1-Tpz1-Ccq1-Pot1) in fission yeast Schizosaccharomyces pombe (S. pombe)by negative-staining and electron microscopy.

Methods

·The Shelterin quinary complex was reconstituted via expression and purification of recombinant proteins in Escherichia coli with histidine-small ubiquitin-related modifier (His-SUMO) and glutathione S-transferase (GST) tags. The target protein complex was isolated via sequential Ni-NTA and glutathione sepharose affinity purification followed by gel filtration chromatography (SuperoseTM6 10/300 GL). The protein samples were stained by 0.75% uranium formate, and then observed by 120 kV transmission electron microscope (TEM) with a magnification of 92 000. The micrographs with good particle dispersity were obtained and the 3D structure of Shelterin complex was reconstructed by single particle image analysis by using EMAN2 and Relion3.0. Finally, UCSF Chimera was used to analyze the reconstruction model of Shelterin complex.

Results

·The recombinant S. pombe Shelterin quinary complex with high purity, component integrity and good homogeneity was obtained by using a tandem affinity purification scheme with Ni-NTA and GST-based chromatography. Eighty-three micrographs were collected through 120 kV TEM, in which 18 659 particles were picked for 3D model reconstruction. After that, the rough 3D structure of the complex was obtained. Molecular docking of the available crystal structures of Shelterin subcomplex into the reconstructed model revealed that the complex existed in a dimeric form and determined the positioning of each component in the complex.

Conclusion

·The low-resolution 3D model of S. pombe Shelterin quinary complex (Rap1-Poz1-Tpz1-Ccq1-Pot1) is obtained.

参考文献

1 CECH T R. Beginning to understand the end of the chromosome[J]. Cell, 2004, 116(2): 273-279.
2 DE LANGE T. Shelterin: the protein complex that shapes and safeguards human telomeres[J]. Genes Dev, 2005, 19(18): 2100-2110.
3 DE LANGE T. Shelterin-mediated telomere protection[J]. Annu Rev Genet, 2018, 52: 223-247.
4 CICCONI A, CHANG S. Shelterin and the replisome: at the intersection of telomere repair and replication[J]. Curr Opin Genet Dev, 2020, 60: 77-84.
5 BHARI V K, KUMAR D, KUMAR S, et al. Shelterin complex gene: prognosis and therapeutic vulnerability in cancer[J]. Biochem Biophys Rep, 2021, 26: 100937.
6 LIM C J, CECH T R. Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 283-298.
7 PATEL T N, VASAN R, GUPTA D, et al. Shelterin proteins and cancer[J]. Asian Pac J Cancer Prev, 2015, 16(8): 3085-3090.
8 AUGEREAU A, T'KINT DE ROODENBEKE C, SIMONET T, et al. Telomeric damage in early stage of chronic lymphocytic leukemia correlates with shelterin dysregulation[J]. Blood, 2011, 118(5): 1316-1322.
9 SASA G S, RIBES-ZAMORA A, NELSON N D, et al. Three novel truncating TINF2 mutations causing severe dyskeratosis congenita in early childhood[J]. Clin Genet, 2012, 81(5): 470-478.
10 SMITH E M, PENDLEBURY D F, NANDAKUMAR J. Structural biology of telomeres and telomerase[J]. Cell Mol Life Sci, 2020, 77(1): 61-79.
11 CHEN Y. The structural biology of the shelterin complex[J]. Biol Chem, 2019, 400(4): 457-466.
12 CHEN Y, YANG Y T, VAN OVERBEEK M, et al. A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins[J]. Science, 2008, 319(5866): 1092-1096.
13 HOFFMAN C S, WOOD V, FANTES P A. An ancient yeast for young geneticists: a primer on the Schizosaccharomyces pombe model system[J]. Genetics, 2015, 201(2): 403-423.
14 ALLSHIRE R C, EKWALL K. Epigenetic regulation of chromatin states in Schizosaccharomyces pombe[J]. Cold Spring Harb Perspect Biol, 2015, 7(7): a018770.
15 KANOH J, ISHIKAWA F. Composition and conservation of the telomeric complex[J]. Cell Mol Life Sci, 2003, 60(11): 2295-2302.
16 LIU J Q, YU C, HU X C, et al. Dissecting fission yeast shelterin interactions via MICro-MS links disruption of shelterin bridge to tumorigenesis[J]. Cell Rep, 2015, 12(12): 2169-2180.
17 ALTSCHULER S E, CROY J E, WUTTKE D S. A small molecule inhibitor of Pot1 binding to telomeric DNA[J]. Biochemistry, 2012, 51(40): 7833-7845.
18 BEREI J, ECKBURG A, MILIAVSKI E, et al. Potential telomere-related pharmacological targets[J]. Curr Top Med Chem, 2020, 20(6): 458-484.
19 XUE J, CHEN H W, WU J, et al. Structure of the fission yeast S. pombe telomeric Tpz1-Poz1-Rap1 complex[J]. Cell Res, 2017, 27(12): 1503-1520.
20 LEI M, PODELL E R, BAUMANN P, et al. DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA[J]. Nature, 2003, 426(6963): 198-203.
21 KIM J K, LIU J Q, HU X C, et al. Structural basis for shelterin bridge assembly[J]. Mol Cell, 2017, 68(4): 698-714.e5.
22 FAIRALL L, CHAPMAN L, MOSS H, et al. Structure of the TRFH dimerization domain of the human telomeric proteins TRF1 and TRF2[J]. Mol Cell, 2001, 8(2): 351-361.
23 LEI M, PODELL E R, CECH T R. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection[J]. Nat Struct Mol Biol, 2004, 11(12): 1223-1229.
24 CHEN C, GU P L, WU J, et al. Structural insights into POT1-TPP1 interaction and POT1 C-terminal mutations in human cancer[J]. Nat Commun, 2017, 8: 14929.
25 KIM S H, DAVALOS A R, HEO S J, et al. Telomere dysfunction and cell survival: roles for distinct TIN2-containing complexes[J]. J Cell Biol, 2008, 181(3): 447-460.
26 TANG G, PENG L W, BALDWIN P R, et al. EMAN2: an extensible image processing suite for electron microscopy[J]. J Struct Biol, 2007, 157(1): 38-46.
27 SCHERES S H W. RELION: implementation of a Bayesian approach to cryo-EM structure determination[J]. J Struct Biol, 2012, 180(3): 519-530.
28 PETTERSEN E F, GODDARD T D, HUANG C C, et al. UCSF Chimera: a visualization system for exploratory research and analysis[J]. J Comput Chem, 2004, 25(13): 1605-1612.
29 BURLEY S K, BERMAN H M, KLEYWEGT G J, et al. Protein data bank (PDB): the single global macromolecular structure archive[J]. Methods Mol Biol, 2017, 1607: 627-641.
30 SCOTT H, KIM J K, YU C, et al. Spatial organization and molecular interactions of the Schizosaccharomyces pombe Ccq1-Tpz1-Poz1 shelterin complex[J]. J Mol Biol, 2017, 429(19): 2863-2872.
31 SAVAGE S A, GIRI N, BAERLOCHER G M, et al. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita[J]. Am J Hum Genet, 2008, 82(2): 501-509.
32 MYLER L R, KINZIG C G, SASI N K, et al. The evolution of metazoan shelterin[J]. Genes Dev, 2021, 35(23/24): 1625-1641.
33 WANG J Y, COHEN A L, LETIAN A, et al. The proper connection between shelterin components is required for telomeric heterochromatin assembly[J]. Genes Dev, 2016, 30(7): 827-839.
34 LIU J Q, HU X C, BAO K H, et al. The cooperative assembly of shelterin bridge provides a kinetic gateway that controls telomere length homeostasis[J]. Nucleic Acids Res, 2021, 49(14): 8110-8119.
文章导航

/