收稿日期: 2022-04-12
录用日期: 2022-06-08
网络出版日期: 2022-08-19
基金资助
国家自然科学基金(31870969);中国医学科学院医学与健康科技创新工程项目(2019-I2M-5-037);上海交通大学医学院“双百人”人才计划(20191816)
Application of a tent-pole screw technology in reconstruction of severe alveolar bone defect: a retrospective study of 30 patients
Received date: 2022-04-12
Accepted date: 2022-06-08
Online published: 2022-08-19
Supported by
National Natural Science Foundation of China(31870969);CAMS Innovation Fund for Medical Sciences (CIFMS)(2019-I2M-5-037);Two Hundred-Talent Program of Shanghai Jiao Tong University School of Medicine(20191816)
目的·探究帐篷钉技术在牙槽骨重度缺损修复重建中的作用。方法·选取2018年1月—2021年1月在上海交通大学医学院附属第九人民医院口腔外科接受帐篷钉技术完成牙槽骨重度缺损修复的30例患者作为研究对象,通过分析与重建患者术前以及术后8个月的锥形束计算机断层扫描(cone-beam computed tomography,CBCT)影像数据,统计患者牙槽骨水平、垂直以及混合型骨缺损的修复重建效果。术后8个月时,在患者接受二期种植手术过程中利用取骨环钻在待种植区域取一圆柱状骨组织样本,通过显微计算机断层扫描(micro-computed tomography,Micro-CT)数据分析样本骨小梁数量(trabecular bone number,Tb. N)、骨小梁厚度(trabecular bone thickness,Tb. Th)、骨体积分数(bone volume/total volume,BV/TV)以及骨骼矿物质密度(bone mineral density,BMD)以明确骨再生效果。通过硬组织切片观察术后组织样本内的新骨形成率及材料残留率以分析新骨形成情况。结果·术后8个月患者牙槽骨垂直骨增量为4.81(1.58,7.66)mm,水平骨增量为3.96(2.38,5.67)mm,骨增量区域的骨增量体积为2 157.22(776.59,2 831.63)mm3。术后8个月骨组织样本Micro-CT分析显示帐篷钉植骨区域Tb. N为(3.09±0.68)/mm,Tb. Th为(0.08±0.01)μm,BV/TV为(25.24±5.60)%,BMD为(0.24±0.05)g/cm3;硬组织切片显示新骨形成率为(16.30±3.57)%,材料残留率为34%(31.75%,38.25%)。上述研究数据表明骨修复与再生良好。患者术中、术后均未出现并发症以及严重不良事件。结论·基于以“稳定为核心”的牙槽骨骨增量理念,使用帐篷钉、膜钉及包袋结构,在规范化操作下,帐篷钉技术可以有效完成牙槽骨重度骨缺损的修复重建,并且术后并发症发生率低,骨增量效果可预测性高,有利于后期口腔种植修复治疗的顺利开展。
吴靖 , 赵正宜 , 邹多宏 , 杨驰 , 张志愿 . 帐篷钉技术在牙槽骨重度缺损修复重建中的应用:30例临床病例回顾性分析与总结[J]. 上海交通大学学报(医学版), 2022 , 42(6) : 768 -777 . DOI: 10.3969/j.issn.1674-8115.2022.06.011
·To explore the effect of a tent-pole screw technology on reconstruction of severe alveolar bone defect.
·Thirty patients underwent tent-pole screw technology to reconstruct severe alveolar bone defects in the Department of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine from January 2018 to January 2021 were enrolled. By analyzing and reconstructing the image data of cone-beam computed tomography (CBCT) before and 8 months after operation, the effects of repairing and reconstructing the horizontal, vertical and mixed alveolar bone defects were counted. The alveolar bone volumetric parameters were evaluated by micro-computed tomography (Micro-CT), and trabecular bone number (Tb. N), trabecular bone thickness (Tb. Th), bone volume/total volume (BV/TV) and bone mineral density (BMD) were calculated to assess the maturity of regenerated bone. The regeneration of alveolar bone and remanent scaffold were calculated by analyzing histological sections.
·Eight months after using the tent-pole screw, the vertical bone gain value was 4.81 (1.58, 7.66) mm, and the horizontal post-operative width was 3.96 (2.38, 5.67) mm. Additionally, the bone volume gain was 2 157.22 (776.59, 2 831.63) mm3. Micro-CT analysis of bone core, which was collected 8 months after the surgery, and Tb. N was (3.09±0.68)/mm, Tb. Th was (0.08±0.01) μm, BV/TV was (25.24±5.60)% and BMD was (0.24±0.05) g/cm3. Histological sections showed that the percentages of regenerated bone and remanent scaffold were (16.30±3.57)% and 34% (31.75%, 38.25%), respectively. These data suggested good new bone formation in targeted area. There were no complications or adverse events during surgery or post-operative healing.
·Based on “stability-oriented” alveolar ridge augmentation, using tent-pole screw, membrane pins and packaging structure in a standard operation procedure can achieve beneficial results for bone augmentation, while complications seldom occurre. The tent-pole screw may offer predictable and exceptional outcomes for implantation site preparation, especially for large alveolar defects, which will provide advantages to subsequent implantation and restoration.
1 | SIMION M, SCARANO A, GIONSO L, et al. Guided bone regeneration using resorbable and nonresorbable membranes: a comparative histologic study in humans[J]. Int J Oral Maxillofac Implants, 1996, 11(6): 735-742. |
2 | BRUNEL G, BROCARD D, DUFFORT J F, et al. Bioabsorbable materials for guided bone regeneration prior to implant placement and 7-year follow-up: report of 14 cases[J]. J Periodontol, 2001, 72(2): 257-264. |
3 | APRILE P, LETOURNEUR D, SIMON-YARZA T. Membranes for guided bone regeneration: a road from bench to bedside[J]. Adv Healthc Mater, 2020, 9(19): e2000707. |
4 | DESHPANDE S, DESHMUKH J, DESHPANDE S, et al. Vertical and horizontal ridge augmentation in anterior maxilla using autograft, xenograft and titanium mesh with simultaneous placement of endosseous implants[J]. J Indian Soc Periodontol, 2014, 18(5): 661-665. |
5 | LE B, ROHRER M D, PRASAD H S. Screw “tent-pole” grafting technique for reconstruction of large vertical alveolar ridge defects using human mineralized allograft for implant site preparation[J]. J Oral Maxillofac Surg, 2010, 68(2): 428-435. |
6 | XIAO T, ZHAO Y, LUO E, et al. “Tent-pole” for reconstruction of large alveolar defects: a case report[J]. J Oral Maxillofac Surg, 2016, 74(1): 55-67. |
7 | CHIAPASCO M, CASENTINI P, ZANIBONI M. Bone augmentation procedures in implant dentistry[J]. Int J Oral Maxillofac Implants, 2009, 24(Suppl): 237-259. |
8 | PE?ARROCHA-DIAGO M, GóMEZ-ADRIáN M D, GARCíA-GARCíA A, et al. Vertical mandibular alveolar bone distraction and dental implant placement: a case report[J]. J Oral Implantol, 2006, 32(3): 137-141. |
9 | SOEHARDI A, MEIJER G J, BERGE S J, et al. Lower border bone onlays to augment the severely atrophic (class Ⅵ) mandible in preparation for implants: a preliminary report[J]. Int J Oral Maxillofac Surg, 2014, 43(12): 1493-1499. |
10 | FELICE P, BARAUSSE C, PISTILLI R, et al. Guided “sandwich” technique: a novel surgical approach for safe osteotomies in the treatment of vertical bone defects in the posterior atrophic mandible: a case report[J]. Implant Dent, 2014, 23(6): 738-744. |
11 | KIYOKAWA K, RIKIMARU H, KIYOKAWA M, et al. Treatment outcomes of implants performed after regenerative treatment of absorbed alveolar bone due to the severe periodontal disease and endoscopic surgery for maxillary sinus lift without bone grafts[J]. J Craniofacial Surg, 2013, 24(5): 1599-1602. |
12 | POLI P P, BERETTA M, CICCIU M, et al. Alveolar ridge augmentation with titanium mesh. A retrospective clinical study[J]. Open Dent J, 2014, 8: 148-158. |
13 | BUSER D, DULA K, BELSER U, et al. Localized ridge augmentation using guided bone regeneration. 1. Surgical procedure in the maxilla[J]. Int J Periodontics Restor Dent, 1993, 13(1): 29-45. |
14 | URBAN I A, JOVANOVIC S A, LOZADA J L. Vertical ridge augmentation using guided bone regeneration (GBR) in three clinical scenarios prior to implant placement: a retrospective study of 35 patients 12 to 72 months after loading[J]. Int J Oral Maxillofac Implants, 2009, 24(3): 502-510. |
15 | URBAN I A, MONJE A, LOZADA J L, et al. Long-term evaluation of peri-implant bone level after reconstruction of severely atrophic edentulous maxilla via vertical and horizontal guided bone regeneration in combination with sinus augmentation: a case series with 1 to 15 years of loading[J]. Clin Implant Dent Relat Res, 2017, 19(1): 46-55. |
16 | SAGHEB K, SCHIEGNITZ E, MOERGEL M, et al. Clinical outcome of alveolar ridge augmentation with individualized CAD-CAM-produced titanium mesh[J]. Int J Implant Dent, 2017, 3(1): 36. |
17 | CIOCCA L, LIZIO G, BALDISSARA P, et al. Prosthetically CAD-CAM-guided bone augmentation of atrophic jaws using customized titanium mesh: preliminary results of an open prospective study[J]. J Oral Implantol, 2018, 44(2): 131-137. |
18 | ROCA-MILLAN E, JANé-SALAS E, ESTRUGO-DEVESA A, et al. Evaluation of bone gain and complication rates after guided bone regeneration with titanium foils: a systematic review[J]. Materials (Basel), 2020, 13(23): 5346. |
19 | CORINALDESI G, PIERI F, SAPIGNI L, et al. Evaluation of survival and success rates of dental implants placed at the time of or after alveolar ridge augmentation with an autogenous mandibular bone graft and titanium mesh: a 3- to 8-year retrospective study[J]. Int J Oral Maxillofac Implants, 2009, 24(6): 1119-1128. |
20 | MCALLISTER B S, HAGHIGHAT K. Bone augmentation techniques[J]. J Periodontol, 2007, 78(3): 377-396. |
21 | MACHTEI E E. The effect of membrane exposure on the outcome of regenerative procedures in humans: a meta-analysis[J]. J Periodontol, 2001, 72(4): 512-516. |
22 | MARX R E, SHELLENBERGER T, WIMSATT J, et al. Severely resorbed mandible: predictable reconstruction with soft tissue matrix expansion (tent pole) grafts[J]. J Oral Maxillofac Surg, 2002, 60(8): 878-888. |
23 | CHASIOTI E, CHIANG T F, DREW H J. Maintaining space in localized ridge augmentation using guided bone regeneration with tenting screw technology[J]. Quintessence Int, 2013, 44(10): 763-771. |
24 | KHOJASTEH A, BEHNIA H, SHAYESTEH Y S, et al. Localized bone augmentation with cortical bone blocks tented over different particulate bone substitutes: a retrospective study[J]. Int J Oral Maxillofac Implants, 2012, 27(6): 1481-1493. |
25 | 赵永强, 蒋练. 帐篷式骨增量技术在口腔种植中的应用研究进展[J]. 口腔疾病防治, 2020, 28(12): 811-816. |
25 | ZHAO Y Q, JIANG L. Application of the tent bone augmentation technique in dental implants[J]. J Prev & Treat Stomatol Dis, 2020, 28(12): 811-816. |
26 | POURDANESH F, ESMAEELINEJAD M, AGHDASHI F. Clinical outcomes of dental implants after use of tenting for bony augmentation: a systematic review[J]. Br J Oral Maxillofac Surg, 2017, 55(10): 999-1007. |
27 | FARIAS D, CACERES F, SANZ A, et al. Horizontal bone augmentation in the posterior atrophic mandible and dental implant stability using the tenting screw technique[J]. Int J Periodontics Restorative Dent, 2021, 41(4): e147-e155. |
28 | CéSAR NETO J B, CAVALCANTI M C, SAPATA V M, et al. The positive effect of tenting screws for primary horizontal guided bone regeneration: a retrospective study based on cone-beam computed tomography data[J]. Clin Oral Implants Res, 2020, 31(9): 846-855. |
29 | 王潇轶, 王国庆, 李芳, 等. “帐篷螺丝”技术在后牙种植区水平骨增量中的临床疗效观察[J]. 现代口腔医学杂志, 2022, 36(01): 27-29. |
29 | WANG X Y, WANG G Q, LI F, et al. Clinical observation of horizontal bone augmentation during posterior tooth implantation with tent-screw technique[J]. J Modern Stomatol, 2022, 36(01): 27-29. |
30 | 邹多宏, 刘昌奎, 薛洋, 等. 帐篷钉技术在牙槽骨修复与再生中的临床应用及操作规范[J]. 中国口腔颌面外科杂志, 2021, 19(1): 1-5. |
30 | ZOU D H, LIU C K, XUE Y, et al. Clinical application of Tent-Peg technique in the reparation and regeneration of alveolar bone-standard operational practice[J]. China J Oral Maxillofac Surg, 2021, 19(1): 1-5. |
31 | HURLEY L A, STINCHFIELD F E, BASSETT A L, et al. The role of soft tissues in osteogenesis. An experimental study of canine spine fusions[J]. J Bone Joint Surg Am, 1959, 41-A: 1243-1254. |
32 | LIU J, KERNS D G. Mechanisms of guided bone regeneration: a review[J]. Open Dent J, 2014, 8: 56-65. |
33 | RASIA-DAL POLO M, POLI P P, RANCITELLI D, et al. Alveolar ridge reconstruction with titanium meshes: a systematic review of the literature[J]. Med Oral Patol Oral Cir Bucal, 2014, 19(6): e639-e646. |
34 | MISCH C M, JENSEN O T, PIKOS M A, et al. Vertical bone augmentation using recombinant bone morphogenetic protein, mineralized bone allograft, and titanium mesh: a retrospective cone beam computed tomography study[J]. Int J Oral Maxillofac Implants, 2015, 30(1): 202-207. |
35 | RIBEIRO FILHO S A, FRANCISCHONE C E, DE OLIVEIRA J C, et al. Bone augmentation of the atrophic anterior maxilla for dental implants using rhBMP-2 and titanium mesh: histological and tomographic analysis[J]. Int J Oral Maxillofac Surg, 2015, 44(12): 1492-1498. |
36 | DAGA D, MEHROTRA D, MOHAMMAD S, et al. Tentpole technique for bone regeneration in vertically deficient alveolar ridges: a prospective study[J]. Oral Biol Craniofac Res, 2018, 8(1): 20-24. |
37 | DEEB G R, TRAN D, CARRICO C K, et al. How effective is the tent screw pole technique compared to other forms of horizontal ridge augmentation?[J]. J Oral Maxillofac Surg, 2017, 75(10): 2093-2098. |
38 | WANG H L, BOYAPATI L. "PASS" principles for predictable bone regeneration[J]. Implant Dent, 2006, 15(1): 8-17. |
39 | SCHWARZ F, ROTHAMEL D, HERTEN M, et al. Immunohis-tochemical characterization of guided bone regeneration at a dehiscence-type defect using different barrier membranes: an experimental study in dogs[J]. Clin Oral Implants Res, 2008, 19(4): 402-415. |
40 | OH T J, MERAW S J, LEE E J, et al. Comparative analysis of collagen membranes for the treatment of implant dehiscence defects[J]. Clin Oral Implants Res, 2003, 14(1): 80-90. |
41 | LI X, WANG X, ZHAO T, et al. Guided bone regeneration using chitosan-collagen membranes in dog dehiscence-type defect model[J]. J Oral Maxillofac Surg, 2014, 72(2): 304. e1-e14. |
42 | CLAVERO J, LUNDGREN S. Ramus or chin grafts for maxillary sinus inlay and local onlay augmentation: comparison of donor site morbidity and complications[J]. Clin Implant Dent Relat Res, 2003, 5(3): 154-160. |
43 | YAMAUCHI K, TAKAHASHI T, FUNAKI K, et al. Histological and histomorphometrical comparative study of β-tricalcium phosphate block grafts and periosteal expansion osteogenesis for alveolar bone augmentation[J]. Int J Oral Maxillofac Surg, 2010, 39(10): 1000-1006. |
44 | KLINGE B, ALBERIUS P, ISAKSSON S, et al. Osseous response to implanted natural bone mineral and synthetic hydroxylapatite ceramic in the repair of experimental skull bone defects[J]. J Oral Maxillofac Surg, 1992, 50(3): 241-249. |
45 | QUI?ONES C R, HüRZELER M B, SCHüPBACH P, et al. Maxillary sinus augmentation using different grafting materials and dental implants in monkeys. Part Ⅳ. Evaluation of hydroxyapatite-coated implants[J]. Clin Oral Implants Res, 1997, 8(6): 497-505. |
46 | PIATTELLI M, FAVERO G A, SCARANO A, et al. Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: a histologic long-term report of 20 cases in humans[J]. Int J Oral Maxillofac Implants, 1999, 14(6): 835-840. |
47 | HALLMAN M, SENNERBY L, LUNDGREN S. A clinical and histologic evaluation of implant integration in the posterior maxilla after sinus floor augmentation with autogenous bone, bovine hydroxyapatite, or a 20:80 mixture[J]. Int J Oral Maxillofac Implants, 2002, 17(5): 635-643. |
48 | BLOCK M S, DEGEN M. Horizontal ridge augmentation using human mineralized particulate bone: preliminary results[J]. J Oral Maxillofac Surg, 2004, 62(9 Suppl 2): 67-72. |
/
〈 |
|
〉 |