综述

胰腺导管腺癌神经侵袭的细胞学机制研究进展

  • 张修齐 ,
  • 沈柏用
展开
  • 上海交通大学医学院附属瑞金医院胰腺中心,上海 200025
张修齐(1996—),女,博士生;电子信箱:noella.zhang@outlook.com
沈柏用,电子信箱:shenby@shsmu.edu.cn

收稿日期: 2022-02-25

  录用日期: 2022-05-22

  网络出版日期: 2022-08-19

Advances in cytological mechanism of neural invasion in pancreatic ductal adenocarcinoma

  • Xiuqi ZHANG ,
  • Baiyong SHEN
Expand
  • Pancreatic Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
SHEN Bai-yong, E-mail: shenby@shsmu.edu.cn.

Received date: 2022-02-25

  Accepted date: 2022-05-22

  Online published: 2022-08-19

摘要

胰腺导管腺癌(pancreatic ductal adenocarcinoma,PDAC)作为最常见的一类胰腺恶性肿瘤,其神经侵袭的发生率高达80%~98%,远超任何其他实体瘤。而其神经侵袭被定义为在包绕神经/神经鞘的神经外膜、神经周围以及神经内膜部位发现PDAC细胞。众多研究已证明,PDAC神经侵袭的发生与更快的疾病进展、更高的肿瘤局部复发率以及更加不良的患者预后均密切相关。PDAC的神经侵袭与胰腺肿瘤微环境中多种类型的特异性/非特异性免疫细胞以及神经胶质相关细胞的行为/相互作用存在相关性,这些行为贯穿于PDAC进展的始终。研究显示,施万细胞、胰腺星状细胞、肿瘤相关巨噬细胞甚至T细胞等众多肿瘤微环境的细胞组成成分,均与PDAC神经侵袭的发生有关。这些关联均是基于上述细胞的细胞间作用及一系列细胞内信号通路。该综述总结并介绍了近年来PDAC神经侵袭细胞学机制领域的研究进展。对其机制进行详尽的研究或有助于新靶点及治疗方式的发现,为未来控制甚至逆转PDAC的神经侵袭过程提供理论依据,并将改善PDAC患者的预后变为可能。

本文引用格式

张修齐 , 沈柏用 . 胰腺导管腺癌神经侵袭的细胞学机制研究进展[J]. 上海交通大学学报(医学版), 2022 , 42(6) : 833 -838 . DOI: 10.3969/j.issn.1674-8115.2022.06.020

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic malignant tumor, and the incidence of neural invasion of PDAC is as high as 80%?98%, far higher than any other solid tumor. Its neural invasion is defined as the discovery of PDAC cells in the nerve adventitia, perinerve and neurointima surrounding the nerve/nerve sheath. Many studies have shown that the occurrence of neural invasion in PDAC is closely related to faster disease progression, higher local recurrence rate and worse prognosis. The neural invasion of PDAC is related to the behavior/interaction of various types of specific/non-specific immune cells and glial-related cells in the pancreatic tumor microenvironment. These behaviors run through the progression of PDAC. Studies show that Schwann cells, pancreatic stellate cells, tumor-associated macrophages and even T cells, are related to the occurrence of neural invasion of PDAC, which is based on the cell-cell interaction of the above cells and a series of intracellular signal pathways. This review summarizes and introduces the research progress in the field of cytological mechanism of PDAC neural invasion in recent years. Detailed studies of its mechanism may contribute to the discovery of new targets and treatment methods, provide a theoretical basis for controlling or even reversing the neural invasion process of PDAC in the future, and make it possible to improve the prognosis of patients with PDAC.

参考文献

1 SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33.
2 GROSSBERG A J, CHU L C, DEIG C R, et al. Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma[J]. CA Cancer J Clin, 2020, 70(5): 375-403.
3 LIEBIG C, AYALA G, WILKS J A, et al. Perineural invasion in cancer: a review of the literature[J]. Cancer, 2009, 115(15): 3379-3391.
4 STOPCZYNSKI R E, NORMOLLE D P, HARTMAN D J, et al. Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma[J]. Cancer Res, 2014, 74(6): 1718-1727.
5 DEMIR I E, CEYHAN G O, LIEBL F, et al. Neural invasion in pancreatic cancer: the past, present and future[J]. Cancers, 2010, 2(3): 1513-1527.
6 NAKAO A, HARADA A, NONAMI T, et al. Clinical significance of carcinoma invasion of the extrapancreatic nerve plexus in pancreatic cancer[J]. Pancreas, 1996, 12(4): 357-361.
7 SCHORN S, DEMIR I E, HALLER B, et al. The influence of neural invasion on survival and tumor recurrence in pancreatic ductal adenocarcinoma: a systematic review and meta-analysis[J]. Surg Oncol, 2017, 26(1): 105-115.
8 LIANG D K, SHI S, XU J, et al. New insights into perineural invasion of pancreatic cancer: more than pain[J]. Biochim Biophys Acta BBA Rev Cancer, 2016, 1865(2): 111-122.
9 AMIT M, NA'ARA S, GIL Z. Mechanisms of cancer dissemination along nerves[J]. Nat Rev Cancer, 2016, 16(6): 399-408.
10 MU W, WANG Z, Z?LLER M. Ping-pong-tumor and host in pancreatic cancer progression[J]. Front Oncol, 2019, 9: 1359.
11 NA'ARA S, AMIT M, GIL Z. L1CAM induces perineural invasion of pancreas cancer cells by upregulation of metalloproteinase expression[J]. Oncogene, 2019, 38(4): 596-608.
12 BAKST R L, XIONG H Z, CHEN C H, et al. Inflammatory monocytes promote perineural invasion via CCL2-mediated recruitment and cathepsin B expression[J]. Cancer Res, 2017, 77(22): 6400-6414.
13 DEBORDE S, WONG R J. How Schwann cells facilitate cancer progression in nerves[J]. Cell Mol Life Sci, 2017, 74(24): 4405-4420.
14 BRESSY C, LAC S, NIGRI J, et al. LIF drives neural remodeling in pancreatic cancer and offers a new candidate biomarker[J]. Cancer Res, 2018, 78(4): 909-921.
15 ZENG L J, GUO Y B, LIANG J Z, et al. Perineural invasion and TAMs in pancreatic ductal adenocarcinomas: review of the original pathology reports using immunohistochemical enhancement and relationships with clinicopathological features[J]. J Cancer, 2014, 5(9): 754-760.
16 ARIMA K, KOMOHARA Y, BU L K, et al. Downregulation of 15-hydroxyprostaglandin dehydrogenase by interleukin-1β from activated macrophages leads to poor prognosis in pancreatic cancer[J]. Cancer Sci, 2018, 109(2): 462-470.
17 CAVEL O, SHOMRON O, SHABTAY A, et al. Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor[J]. Cancer Res, 2012, 72(22): 5733-5743.
18 HUANG C M, LI Y Q, GUO Y B, et al. MMP1/PAR1/SP/NK1R paracrine loop modulates early perineural invasion of pancreatic cancer cells[J]. Theranostics, 2018, 8(11): 3074-3086.
19 VONLAUFEN A, JOSHI S, QU C F, et al. Pancreatic stellate cells: partners in crime with pancreatic cancer cells[J]. Cancer Res, 2008, 68(7): 2085-2093.
20 LI X Q, LIU H, XU Q H, et al. P-0095 sonic hedgehog paracrine signaling activates pancreatic stellate cells to promote the perineural invasion of pancreatic cancer in vivo[J]. Ann Oncol, 2012, 23: iv58-iv59.
21 FUJITA H, OHUCHIDA K, MIZUMOTO K, et al. Tumor-stromal interactions with direct cell contacts enhance proliferation of human pancreatic carcinoma cells[J]. Cancer Sci, 2009, 100(12): 2309-2317.
22 DE SIMONE R, AMBROSINI E, CARNEVALE D, et al. NGF promotes microglial migration through the activation of its high affinity receptor: modulation by TGF-β[J]. J Neuroimmunol, 2007, 190(1/2): 53-60.
23 YANG M W, TAO L Y, JIANG Y S, et al. Perineural invasion reprograms the immune microenvironment through cholinergic signaling in pancreatic ductal adenocarcinoma[J]. Cancer Res, 2020, 80(10): 1991-2003.
24 DANG C X, ZHANG Y, MA Q Y, et al. Expression of nerve growth factor receptors is correlated with progression and prognosis of human pancreatic cancer[J]. J Gastroenterol Hepatol, 2006, 21(5): 850-858.
25 DEMIR I E, CEYHAN G O, RAUCH U, et al. The microenvironment in chronic pancreatitis and pancreatic cancer induces neuronal plasticity[J]. Neurogastroenterol Motil, 2010, 22(4): 480-490, e112-e113.
26 KONDO N, MURAKAMI Y, UEMURA K, et al. Su1826 increased number of perineural invasion is independently associated with poor survival of patients with resectable pancreatic cancer[J]. Gastroenterology, 2014, 146(5): S-1046.
27 FUJII-NISHIMURA Y, YAMAZAKI K, MASUGI Y, et al. Mesenchymal-epithelial transition of pancreatic cancer cells at perineural invasion sites is induced by Schwann cells[J]. Pathol Int, 2018, 68(4): 214-223.
28 TANAKA M, MIHALJEVIC A L, PROBST P, et al. Meta-analysis of recurrence pattern after resection for pancreatic cancer[J]. Br J Surg, 2019, 106(12): 1590-1601.
29 ALBANESE C, ALZANI R, AMBOLDI N, et al. Dual targeting of CDK and tropomyosin receptor kinase families by the oral inhibitor PHA-848125, an agent with broad-spectrum antitumor efficacy[J]. Mol Cancer Ther, 2010, 9(8): 2243-2254.
文章导航

/