论著 · 基础研究

构建高效载体OPEI沉默TRAF6促进骨关节炎软骨再生的研究

  • 刘宏强 ,
  • 陆艳青 ,
  • 高宇轩 ,
  • 王一云 ,
  • 王传东 ,
  • 张晓玲
展开
  • 1.山西大学体育学院,太原 030006
    2.上海交通大学医学院附属新华医院骨科,上海 200092
    3.山西医科大学第二医院骨科,太原 030001
刘宏强(1969—),男,副教授,硕士;电子信箱:liuhq1969@sxu.edu.cn
张晓玲,电子信箱:xlzhang@shsmu.edu.cn

收稿日期: 2022-01-06

  录用日期: 2022-06-18

  网络出版日期: 2022-09-04

基金资助

国家自然科学基金(81772432);山西省重点研发计划项目(201903D321097)

Construction of OPEI vector for silencing TRAF6 to promote cartilage regeneration in inflammatory environment

  • Hongqiang LIU ,
  • Yanqing LU ,
  • Yuxuan GAO ,
  • Yiyun WANG ,
  • Chuandong WANG ,
  • Xiaoling ZHANG
Expand
  • 1.School of Physical Education, Shanxi University, Taiyuan 030006, China
    2.Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
    3.Second Hospital of Shanxi Medical University, Taiyuan 030001, China
ZHANG Xiaoling, E-mail: xlzhang@shsmu.edu.cn.

Received date: 2022-01-06

  Accepted date: 2022-06-18

  Online published: 2022-09-04

Supported by

National Natural Science Foundation of China(81772432);Key Research and Development Program of Shanxi Province(201903D321097)

摘要

目的·构建低毒性的关节滑膜高效率siRNA转染载体OPEI,抑制肿瘤坏死因子受体相关因子6(tumor necrosis factor receptor-associated factor 6,TRAF6),观察其对骨关节炎(osteoarthritis,OA)模型骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMSCs)成软骨能力的影响。方法·通过内侧半月板切除术建立SD大鼠OA模型(OA组,n=20);另设假手术组(n=10),半月板保持完好。造模后3个月后采集手术部位软骨和滑膜,免疫组织化学法检测TRAF6的表达,Western blotting方法检测白介素-1β(interleukin-1β,IL-1β)诱导的大鼠原代滑膜细胞中MMP13、TRAF6、p-p65的表达。在无水厌氧环境中合成小分子聚乙烯亚胺(polyethylenimine,PEI)衍生物OPEI,琼脂糖凝胶电泳检测OPEI包裹siRNA的能力,动态光散射测量形成的OPEI/siRNA复合物的粒径和Zeta电位,MTT法检测形成的复合物对大鼠原代滑膜细胞的细胞毒性,流式细胞术分析复合物对滑膜细胞凋亡的影响,并利用激光共聚焦技术及荧光显微镜观测体内外OPEI在滑膜细胞中转染siRNA的效率,阿尔新蓝染色检测软骨细胞基质蛋白聚糖含量。结果·与假手术组相比,TRAF6在大鼠OA模型的滑膜及软骨中的表达显著升高;抑制TRAF6表达可显著降低IL-1β刺激的原代滑膜细胞中MMP13和p-p65的表达。构建的OPEI载体在大鼠原代滑膜细胞中的siRNA转染效率高达99.33%,在大鼠膝关节腔内注射OPEI/Cy3-siRNA后第3日、第7日均显示大量滑膜细胞摄取siRNA。OPEI/siTRAF6复合物转染大鼠原代滑膜细胞2 d,Western blotting结果显示OPEI/siTRAF6组在质量比值为3∶1、4∶1和5∶1时,TRAF6基因敲除效率分别为49.05%、74.61%和83.18%。OPEI/siTRAF6沉默TRAF6基因后,与对照组(OPEI/siNC)相比,IL-1β刺激条件下软骨细胞阿尔新蓝染色显著增强。结论·OPEI是低毒性高效率siRNA转染载体,在滑膜细胞中沉默TRAF6可促进骨关节炎软骨再生。

本文引用格式

刘宏强 , 陆艳青 , 高宇轩 , 王一云 , 王传东 , 张晓玲 . 构建高效载体OPEI沉默TRAF6促进骨关节炎软骨再生的研究[J]. 上海交通大学学报(医学版), 2022 , 42(7) : 846 -857 . DOI: 10.3969/j.issn.1674-8115.2022.07.002

Abstract

Objective

·To construct a low toxicity and high-efficiency joint synovial siRNA transfection vector OPEI, and inhibit tumor necrosis factor receptor-associated factor 6 (TRAF6) to rescue the chondrogenic ability of bone marrow mesenchymal stem cells (BMSCs) under inflammatory conditions.

Methods

·The osteoarthritis (OA) models of SD rats (n=20) were established by medial meniscectomy of knee. Another sham operation group (n=10) was established, and the meniscus remained intact. The cartilage and synovium were collected 3 months after surgery. The expression of TRAF6 was detected by immunohistochemistry, and Western blotting was used to detect the expression of MMP13, TRAF6 and p-p65 in primary rat synovial cells induced by interleukin-1β (IL-1β). Further, the small molecule polyethylenimine (PEI) derivative OPEI was synthesized in anhydrous anaerobic environment, and the ability of OPEI to encapsulate siRNA was detected by agarose gel electrophoresis. The particle size and Zeta potential of OPEI/siRNA complex were measured by dynamic light scattering. The cytotoxicity of the formed complex to rat primary synovial cells was detected by MTT method. The effect of the complex on synovial cell apoptosis was analyzed by flow cytometry. The transfection efficiency of siRNA by OPEI in synovial cells in vivo and in vitro was detected by laser confocal technique and fluorescence microscopy. The proteoglycan content of chondrocyte matrix was detected by alcian blue staining.

Results

·Compared with the sham operation group, TRAF6 was highly expressed in synovium and cartilage of the rat OA models, and inhibition of TRAF6 could significantly reduce the expression of MMP13 and p-p65 in IL-1β-stimulated primary synovial cells. The siRNA transfection efficiency of OPEI in the rat primary synovial cells was as high as 99.33%. A large number of synovial cells ingested siRNA on the 3rd and the 7th day after injection of OPEI / Cy3-siRNA into rat knee joints. Two days after OPEI / siTRAF6 complex with different w/w ratios was transfected into rat primary synovial cells, the results of TRAF6 protein expression showed that the knockout efficiency of TRAF6 gene in the OPEI / siTRAF6 group was 49.05%, 74.61% and 83.18% respectively when the mass ratio was 3∶1, 4∶1 and 5∶1. After TRAF6 gene was silenced by OPEI/siTRAF6, compared with the control group (OPEI/siNC), alcian blue staining of chondrocytes was significantly enhanced under IL-1β stimulation.

Conclusion

·OPEI is a low toxicity and high efficiency siRNA transfection vector, silencing TRAF6 in synovial cells could promote OA cartilage regeneration.

参考文献

1 GOLDRING S R, GOLDRING M B. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk[J]. Nat Rev Rheumatol, 2016, 12(11): 632-644.
2 LEE W Y W, WANG B. Cartilage repair by mesenchymal stem cells: clinical trial update and perspectives[J]. J Orthop Translat, 2017, 9: 76-88.
3 WU C L, Harasymowicz N S, Klimak M A, et al. The role of macrophages in osteoarthritis and cartilage repair [J]. Osteoarthr Cartil, 2020, 28(5):544-554.
4 MAKRIS E A, GOMOLL A H, MALIZOS K N, et al. Repair and tissue engineering techniques for articular cartilage[J]. Nat Rev Rheumatol, 2015, 11(1): 21-34.
5 CHOY E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis[J]. Rheumatology (Oxford), 2012, 51(Suppl 5): v3-v11.
6 CALABRESE L H, ROSE-JOHN S. IL-6 biology: implications for clinical targeting in rheumatic disease[J]. Nat Rev Rheumatol, 2014, 10(12): 720-727.
7 FIRESTEIN G S. Evolving concepts of rheumatoid arthritis[J]. Nature, 2003, 423(6937): 356-361.
8 MCINNES I B, SCHETT G. Cytokines in the pathogenesis of rheumatoid arthritis[J]. Nat Rev Immunol, 2007, 7(6): 429-442.
9 DINARELLO C A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases[J]. Blood, 2011, 117(14): 3720-3732.
10 TONG W X, GENG Y Y, HUANG Y, et al. In vivo identification and induction of articular cartilage stem cells by inhibiting NF-κB signaling in osteoarthritis[J]. Stem Cells, 2015, 33(10): 3125-3137.
11 PHAM L V, ZHOU H J, LIN-LEE Y C, et al. Nuclear tumor necrosis factor receptor-associated factor 6 in lymphoid cells negatively regulates c-Myb-mediated transactivation through small ubiquitin-related modifier-1 modification[J]. J Biol Chem, 2008, 283(8): 5081-5089.
12 LAPPAS M. The IL-1β signalling pathway and its role in regulating pro-inflammatory and pro-labour mediators in human primary myometrial cells[J]. Reprod Biol, 2017, 17(4): 333-340.
13 BRENKE J K, POPOWICZ G M, SCHORPP K, et al. Targeting TRAF6 E3 ligase activity with a small-molecule inhibitor combats autoimmunity[J]. J Biol Chem, 2018, 293(34): 13191-13203.
14 CAO Z, XIONG J, TAKEUCHI M, et al. TRAF6 is a signal transducer for interleukin-1[J]. Nature, 1996, 383(6599): 443-446.
15 ZHU L J, YANG T C, WU Q, et al. Tumor necrosis factor receptor-associated factor (TRAF) 6 inhibition mitigates the pro-inflammatory roles and proliferation of rheumatoid arthritis fibroblast-like synoviocytes[J]. Cytokine, 2017, 93: 26-33.
16 ZHONG J H, LI J, LIU C F, et al. Effects of microRNA-146a on the proliferation and apoptosis of human osteoarthritis chondrocytes by targeting TRAF6 through the NF-κB signalling pathway[J]. Biosci Rep, 2017, 37(2): BSR20160578.
17 DAI K R, ZHANG X L, SHI Q, et al. Gene therapy of arthritis and orthopaedic disorders: current experimental approaches in China and in Canada[J]. Expert Opin Biol Ther, 2008, 8(9): 1337-1346.
18 JEONG J H, MOK H, OH Y K, et al. siRNA conjugate delivery systems[J]. Bioconjug Chem, 2009, 20(1): 5-14.
19 LUNGWITZ U, BREUNIG M, BLUNK T, et al. Polyethylenimine-based non-viral gene delivery systems[J]. Eur J Pharm Biopharm, 2005, 60(2): 247-266.
20 XIANG S N, SU J, TONG H J, et al. Biscarbamate cross-linked low molecular weight PEI for delivering IL-1 receptor antagonist gene to synoviocytes for arthritis therapy[J]. Biomaterials, 2012, 33(27): 6520-6532.
21 ULLAH I, ZHAO J, RUKH S, et al. A PEG-b-poly(disulfide-l-lysine) based redox-responsive cationic polymer for efficient gene transfection[J]. J Mater Chem B, 2019, 7(11): 1893-1905.
22 ULLAH I, ZHAO J, SU B, et al. Redox stimulus disulfide conjugated polyethyleneimine as a shuttle for gene transfer[J]. J Mater Sci Mater Med, 2020, 31(12): 118.
23 GOSSELIN M A, GUO W, LEE R J. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine[J]. Bioconjug Chem, 2001, 12(6): 989-994.
24 KATRI A, D?BROWSKA A, L?FVALL H, et al. A dual amylin and calcitonin receptor agonist inhibits pain behavior and reduces cartilage pathology in an osteoarthritis rat model[J]. Osteoarthr Cartil, 2019, 27(9): 1339-1346.
25 ZHU H, GUO Z K, JIANG X X, et al. A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone[J]. Nat Protoc, 2010, 5(3): 550-560.
26 ELGHANAM G A, LIU Y N, KHALILI S, et al. Compact bone-derived multipotent mesenchymal stromal cells (MSCs) for the treatment of sjogren's-like disease in NOD mice[J]. Methods Mol Biol, 2017, 1553: 25-39.
27 ZHAO J J, OUYANG Q Q, HU Z Y, et al. A protocol for the culture and isolation of murine synovial fibroblasts[J]. Biomed Rep, 2016, 5(2): 171-175.
28 LIN Z M, MIAO J N, ZHANG T, et al. JUNB-FBXO21-ERK axis promotes cartilage degeneration in osteoarthritis by inhibiting autophagy[J]. Aging Cell, 2021, 20(2): e13306.
29 CHEN D, SHEN J, ZHAO W W, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism[J]. Bone Res, 2017, 5: 16044.
30 JIANG Y. Osteoarthritis year in review 2021: biology[J]. Osteoarthr Cartil, 2022, 30(2): 207-215.
31 MIN Y, KIM M J, LEE S N, et al. Inhibition of TRAF6 ubiquitin-ligase activity by PRDX1 leads to inhibition of NFKB activation and autophagy activation[J]. Autophagy, 2018, 14(8): 1347-1358.
32 RAI M F, PAN H, YAN H M, et al. Applications of RNA interference in the treatment of arthritis[J]. Transl Res, 2019, 214: 1-16.
33 APPARAILLY F, JORGENSEN C. siRNA-based therapeutic approaches for rheumatic diseases[J]. Nat Rev Rheumatol, 2013, 9(1): 56-62.
34 HUNTER A C. Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity[J]. Adv Drug Deliv Rev, 2006, 58(14): 1523-1531.
35 BITON J, SEMERANO L, DELAVALLéE L, et al. Interplay between TNF and regulatory T cells in a TNF-driven murine model of arthritis[J]. J Immunol, 2011, 186(7): 3899-3910.
36 STONE A, GROL M W, RUAN M Z C, et al. Combinatorial Prg4 and il-1ra gene therapy protects against hyperalgesia and cartilage degeneration in post-traumatic osteoarthritis[J]. Hum Gene Ther, 2019, 30(2): 225-235.
37 BARTOK B, FIRESTEIN G S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis[J]. Immunol Rev, 2010, 233(1): 233-255.
文章导航

/