收稿日期: 2022-03-23
录用日期: 2022-06-23
网络出版日期: 2022-08-08
基金资助
国家自然科学基金(81701917);上海市教育委员会高峰高原学科建设计划(20191916)
Advances in application of adipose-derived mesenchymal stem cells in autoimmune diseases
Received date: 2022-03-23
Accepted date: 2022-06-23
Online published: 2022-08-08
Supported by
National Natural Science Foundation of China(81701917);Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support(20191916)
自身免疫性疾病(autoimmune diseases,AIDs)的发生发展是由于患者自身免疫耐受能力下降甚至被破坏,机体内部产生过多的自身抗体和(或)致敏性淋巴细胞,从而造成相关的组织病理变化和临床表型。目前临床上治疗该类疾病的主要方式仍是以药物为主的非特异性免疫抑制疗法,虽然在一定程度上可以缓解患者症状,但对于重症患者来说,效果往往不理想。近些年来,随着对间充质干细胞(mesenchymal stem cells,MSCs)的深入研究,人们对其特性的认识从具有高度自我更新与分化能力,逐渐扩展到免疫调节功能方面。与此同时,基于MSCs的研究方向也逐渐从最初的再生医学转向自身免疫学领域。随着大量相关的临床前和临床试验的开展,脂肪来源间充质干细胞(adipose-derived mesenchymal stem cells,AD-MSCs)的局部或全身应用被认为是临床上治疗自身免疫疾病的有效手段之一。该文就AD-MSCs的生物学特性及其在系统性红斑狼疮、类风湿关节炎、1型糖尿病、炎症性肠病、系统性硬化、银屑病等AIDs中的应用进行阐述并提出展望。
关键词: 脂肪来源间充质干细胞(AD-MSCs); 免疫调节; 自身免疫性疾病; 临床应用
李悦华 , 李青峰 , 谢芸 . 脂肪来源间充质干细胞在自身免疫性疾病中的应用进展[J]. 上海交通大学学报(医学版), 2022 , 42(8) : 1131 -1138 . DOI: 10.3969/j.issn.1674-8115.2022.08.019
The occurrence and development of autoimmune diseases is due to the decrease or even destruction of the patient's autoimmune tolerance, and excessive production of autoantibodies and/or sensitized lymphocytes in the body, resulting in histopathological changes and clinical phenotypes. At present, the main clinical treatment is the drug-based non-specific immunosuppression therapy. Although it can relieve some patients' symptoms, for severe patients, the effect is often not ideal. In recent years, with the in-depth study of mesenchymal stem cells (MSCs), people's understanding of their characteristics has gradually expanded from highly self-renewal and differentiation ability to immunomodulatory function. At the same time, the research direction based on MSCs has gradually shifted from regenerative medicine to the field of autoimmunology. With the development of preclinical and clinical trials, systemic or local application of adipose-derived mesenchymal stem cells (AD-MSCs) has been gradually recognized as one of the effective methods for clinical treatment of autoimmune diseases. In this review, the biological characteristics of AD-MSCs and their application to autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus, inflammatory bowel disease, systemic scleroderma, and psoriasis, are highlighted.
1 | HELLESEN A, BRATLAND E, HUSEBYE E S. Autoimmune Addison's disease: an update on pathogenesis[J]. Ann D'endocrinologie, 2018, 79(3): 157-163. |
2 | ROSE N R. Prediction and prevention of autoimmune disease in the 21st century: a review and preview[J]. Am J Epidemiol, 2016, 183(5): 403-406. |
3 | WANG L F, WANG F S, GERSHWIN M E. Human autoimmune diseases: a comprehensive update[J]. J Intern Med, 2015, 278(4): 369-395. |
4 | CROW M K, OLFERIEV M, KIROU K A. Type Ⅰ interferons in autoimmune disease[J]. Annu Rev Pathol, 2019, 14: 369-393. |
5 | SURACE A E A, HEDRICH C M. The role of epigenetics in autoimmune/inflammatory disease[J]. Front Immunol, 2019, 10: 1525. |
6 | LERNER A, SHOENFELD Y, MATTHIAS T. Adverse effects of gluten ingestion and advantages of gluten withdrawal in nonceliac autoimmune disease[J]. Nutr Rev, 2017, 75(12): 1046-1058. |
7 | RA J C, KANG S K, SHIN I S, et al. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells[J]. J Transl Med, 2011, 9: 181. |
8 | MUNIR H, MCGETTRICK H M. Mesenchymal stem cell therapy for autoimmune disease: risks and rewards[J]. Stem Cells Dev, 2015, 24(18): 2091-2100. |
9 | RHEE K J, LEE J I, EOM Y W. Mesenchymal stem cell-mediated effects of tumor support or suppression[J]. Int J Mol Sci, 2015, 16(12): 30015-30033. |
10 | TSUJI W, RUBIN J P, MARRA K G. Adipose-derived stem cells: implications in tissue regeneration[J]. World J Stem Cells, 2014, 6(3): 312-321. |
11 | AGRAWAL I, JHA S. Comprehensive review of ASC structure and function in immune homeostasis and disease[J]. Mol Biol Rep, 2020, 47(4): 3077-3096. |
12 | ZUK P A, ZHU M, MIZUNO H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies[J]. Tissue Eng, 2001, 7(2): 211-228. |
13 | KOCAN B, MAZIARZ A, TABARKIEWICZ J, et al. Trophic activity and phenotype of adipose tissue-derived mesenchymal stem cells as a background of their regenerative potential[J]. Stem Cells Int, 2017, 2017: 1653254. |
14 | MARIA A T, MAUMUS M, LE QUELLEC A, et al. Adipose-derived mesenchymal stem cells in autoimmune disorders: state of the art and perspectives for systemic sclerosis[J]. Clin Rev Allergy Immunol, 2017, 52(2): 234-259. |
15 | CHO K S, ROH H J. Immunomodulatory effects of adipose-derived stem cells in airway allergic diseases[J]. Curr Stem Cell Res Ther, 2010, 5(2): 111-115. |
16 | CHEN Y D, YU Q, HU Y F, et al. Current research and use of mesenchymal stem cells in the therapy of autoimmune diseases[J]. Curr Stem Cell Res Ther, 2019, 14(7): 579-582. |
17 | NARAYAN S, KOLLY L, SO A, et al. Increased interleukin-10 production by ASC-deficient CD4+ T cells impairs bystander T-cell proliferation[J]. Immunology, 2011, 134(1): 33-40. |
18 | HEO J S, CHOI Y, KIM H O. Adipose-derived mesenchymal stem cells promote M2 macrophage phenotype through exosomes[J]. Stem Cells Int, 2019, 2019: 7921760. |
19 | MA S, XIE N, LI W, et al. Immunobiology of mesenchymal stem cells[J]. Cell Death Differ, 2014, 21(2): 216-225. |
20 | HARRELL C R, JOVICIC N, DJONOV V, et al. Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases[J]. Cells, 2019, 8(12): E1605. |
21 | TOH W S, LAI R C, ZHANG B, et al. MSC exosome works through a protein-based mechanism of action[J]. Biochem Soc Trans, 2018, 46(4): 843-853. |
22 | FATHOLLAHI A, GABALOU N B, ASLANI S. Mesenchymal stem cell transplantation in systemic lupus erythematous, a mesenchymal stem cell disorder[J]. Lupus, 2018, 27(7): 1053-1064. |
23 | CHOI E W, SHIN I S, PARK S Y, et al. Reversal of serologic, immunologic, and histologic dysfunction in mice with systemic lupus erythematosus by long-term serial adipose tissue-derived mesenchymal stem cell transplantation[J]. Arthritis Rheum, 2012, 64(1): 243-253. |
24 | WEI S, XIE S, YANG Z, et al. Allogeneic adipose-derived stem cells suppress mTORC1 pathway in a murine model of systemic lupus erythematosus[J]. Lupus, 2019, 28(2): 199-209. |
25 | MATSUDA S, KOTANI T, SAITO T, et al. Low-molecular-weight heparin enhanced therapeutic effects of human adipose-derived stem cell administration in a mouse model of lupus nephritis[J]. Front Immunol, 2021, 12: 792739. |
26 | RANJBAR A, HASSANZADEH H, JAHANDOUST F, et al. Allogeneic adipose-derived mesenchymal stromal cell transplantation for refractory lupus nephritis: results of a phase I clinical trial[J]. Curr Res Transl Med, 2022, 70(2): 103324. |
27 | ZHOU B, YUAN J D, ZHOU Y X, et al. Administering human adipose-derived mesenchymal stem cells to prevent and treat experimental arthritis[J]. Clin Immunol, 2011, 141(3): 328-337. |
28 | GARIMELLA M G, KOUR S, PIPRODE V, et al. Adipose-derived mesenchymal stem cells prevent systemic bone loss in collagen-induced arthritis[J]. J Immunol, 2015, 195(11): 5136-5148. |
29 | VIJ R, STEBBINGS K A, KIM H, et al. Safety and efficacy of autologous, adipose-derived mesenchymal stem cells in patients with rheumatoid arthritis: a phase Ⅰ/Ⅱa, open-label, non-randomized pilot trial[J]. Stem Cell Res Ther, 2022, 13(1): 88. |
30 | LIN H P, CHAN T M, FU R H, et al. Applicability of adipose-derived stem cells in type 1 diabetes mellitus[J]. Cell Transplant, 2015, 24(3): 521-532. |
31 | IKEMOTO T, TOKUDA K, WADA Y M, et al. Adipose tissue from type 1 diabetes mellitus patients can be used to generate insulin-producing cells[J]. Pancreas, 2020, 49(9): 1225-1231. |
32 | DANG L T, BUI A N, LE-THANH NGUYEN C, et al. Intravenous infusion of human adipose tissue-derived mesenchymal stem cells to treat type 1 diabetic mellitus in mice: an evaluation of grafted cell doses[J]. Adv Exp Med Biol, 2018, 1083: 145-156. |
33 | HASHEMI S M, HASSAN Z M, HOSSEIN-KHANNAZER N, et al. Investigating the route of administration and efficacy of adipose tissue-derived mesenchymal stem cells and conditioned medium in type 1 diabetic mice[J]. Inflammopharmacology, 2020, 28(2): 585-601. |
34 | DANTAS J R, ARAúJO D B, SILVA K R, et al. Adipose tissue-derived stromal/stem cells+ cholecalciferol: a pilot study in recent-onset type 1 diabetes patients[J]. Arch Endocrinol Metab, 2021, 65(3): 342-351. |
35 | THAKKAR U G, TRIVEDI H L, VANIKAR A V, et al. Insulin-secreting adipose-derived mesenchymal stromal cells with bone marrow-derived hematopoietic stem cells from autologous and allogenic sources for type 1 diabetes mellitus[J]. Cytotherapy, 2015, 17(7): 940-947. |
36 | GARCíA-OLMO D, GARCíA-ARRANZ M, HERREROS D, et al. A phase Ⅰ clinical trial of the treatment of Crohn's fistula by adipose mesenchymal stem cell transplantation[J]. Dis Colon Rectum, 2005, 48(7): 1416-1423. |
37 | CHO Y B, LEE W Y, PARK K J, et al. Autologous adipose tissue-derived stem cells for the treatment of Crohn's fistula: a phase I clinical study[J]. Cell Transplant, 2013, 22(2): 279-285. |
38 | DE LA PORTILLA F, ALBA F, GARCíA-OLMO D, et al. Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn's disease: results from a multicenter phase Ⅰ/Ⅱa clinical trial[J]. Int J Colorectal Dis, 2013, 28(3): 313-323. |
39 | GARCIA-OLMO D, HERREROS D, PASCUAL I, et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase Ⅱ clinical trial[J]. Dis Colon Rectum, 2009, 52(1): 79-86. |
40 | PARK K J, RYOO S B, KIM J S, et al. Allogeneic adipose-derived stem cells for the treatment of perianal fistula in Crohn's disease: a pilot clinical trial[J]. Colorectal Dis, 2016, 18(5): 468-476. |
41 | CHOI S, RYOO S B, PARK K J, et al. Autologous adipose tissue-derived stem cells for the treatment of complex perianal fistulas not associated with Crohn's disease: a phase Ⅱ clinical trial for safety and efficacy[J]. Tech Coloproctol, 2017, 21(5): 345-353. |
42 | WU Y, HUANG S, ENHE J, et al. Bone marrow-derived mesenchymal stem cell attenuates skin fibrosis development in mice[J]. Int Wound J, 2014, 11(6): 701-710. |
43 | MOODLEY Y, ATIENZA D, MANUELPILLAI U, et al. Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury[J]. Am J Pathol, 2009, 175(1): 303-313. |
44 | ZHAO F, ZHANG Y F, LIU Y G, et al. Therapeutic effects of bone marrow-derived mesenchymal stem cells engraftment on bleomycin-induced lung injury in rats[J]. Transplant Proc, 2008, 40(5): 1700-1705. |
45 | MARIA A T, TOUPET K, MAUMUS M, et al. Human adipose mesenchymal stem cells as potent anti-fibrosis therapy for systemic sclerosis[J]. J Autoimmun, 2016, 70: 31-39. |
46 | SCUDERI N, CECCARELLI S, ONESTI M G, et al. Human adipose-derived stromal cells for cell-based therapies in the treatment of systemic sclerosis[J]. Cell Transplant, 2013, 22(5): 779-795. |
47 | COLEMAN S R. Structural fat grafting: more than a permanent filler[J]. Plast Reconstr Surg, 2006, 118(3 Suppl): 108S-120S. |
48 | STRONG A L, ADIDHARMA W, BROWN O H, et al. Fat grafting subjectively improves facial skin elasticity and hand function of scleroderma patients[J]. Plast Reconstr Surg Glob Open, 2021, 9(1): e3373. |
49 | GHEISARI M, AHMADZADEH A, NOBARI N, et al. Autologous fat grafting in the treatment of facial scleroderma[J]. Dermatol Res Pract, 2018, 2018: 6568016. |
50 | MAGALON G, DAUMAS A, SAUTEREAU N, et al. Regenerative approach to scleroderma with fat grafting[J]. Clin Plast Surg, 2015, 42(3): 353-364, viii-ix. |
51 | GUILLAUME-JUGNOT P, DAUMAS A, MAGALON J, et al. State of the art. Autologous fat graft and adipose tissue-derived stromal vascular fraction injection for hand therapy in systemic sclerosis patients[J]. Curr Res Transl Med, 2016, 64(1): 35-42. |
52 | MENTER A, GOTTLIEB A, FELDMAN S R, et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: section 1. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics[J]. J Am Acad Dermatol, 2008, 58(5): 826-850. |
53 | ARMSTRONG A W, READ C. Pathophysiology, clinical presentation, and treatment of psoriasis: a review[J]. JAMA, 2020, 323(19): 1945-1960. |
54 | KIM W B, JEROME D, YEUNG J. Diagnosis and management of psoriasis[J]. Can Fam Physician, 2017, 63(4): 278-285. |
55 | ROKUNOHE A, MATSUZAKI Y, ROKUNOHE D, et al. Immunosuppressive effect of adipose-derived stromal cells on imiquimod-induced psoriasis in mice[J]. J Dermatol Sci, 2016, 82(1): 50-53. |
56 | DE JESUS M M, SANTIAGO J S, TRINIDAD C V, et al. Autologous adipose-derived mesenchymal stromal cells for the treatment of psoriasis vulgaris and psoriatic arthritis: a case report[J]. Cell Transplant, 2016, 25(11): 2063-2069. |
57 | COMELLA K, PARLO M, DALY R, et al. First-in-man intravenous implantation of stromal vascular fraction in psoriasis: a case study[J]. Int Med Case Rep J, 2018, 11: 59-64. |
58 | YAO D N, YE S Y, HE Z Y, et al. Adipose-derived mesenchymal stem cells (AD-MSCs) in the treatment for psoriasis: results of a single-arm pilot trial[J]. Ann Transl Med, 2021, 9(22): 1653. |
/
〈 |
|
〉 |