论著 · 临床研究

双层探测器光谱CT虚拟单能量图像在胰腺导管腺癌术前评估中的优化研究

  • 杨琰昭 ,
  • 常蕊 ,
  • 王晴柔 ,
  • 朱乃懿 ,
  • 李若坤 ,
  • 柴维敏 ,
  • 严福华
展开
  • 上海交通大学医学院附属瑞金医院放射科,上海 200025
杨琰昭(1994—),男,住院医师,硕士;电子信箱:yyz12348@rjh.com.cn
严福华,电子信箱:yfh11655@rjh.com.cn

收稿日期: 2022-06-15

  录用日期: 2022-08-20

  网络出版日期: 2022-09-28

基金资助

上海市高水平地方高校创新团队项目(SHSMU-ZDCX20210702)

Optimized study of virtual monoenergetic images derived from a dual-layer spectral detector CT in the preoperative evaluation of pancreatic ductal adenocarcinoma

  • Yanzhao YANG ,
  • Rui CHANG ,
  • Qingrou WANG ,
  • Naiyi ZHU ,
  • Ruokun LI ,
  • Weimin CHAI ,
  • Fuhua YAN
Expand
  • Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
YAN Fuhua, E-mail: yfh11655@rjh.com.cn.

Received date: 2022-06-15

  Accepted date: 2022-08-20

  Online published: 2022-09-28

Supported by

Innovative Research Team of High-Level Local Universities in Shanghai(SHSMU-ZDCX20210702)

摘要

目的·探讨研究双层探测器光谱电子计算机断层扫描(computed tomography,CT)虚拟单能量图像(virtual monoenergetic image,VMI)在胰腺导管腺癌(pancreatic ductal adenocarcinoma,PDAC)术前评估中的最佳成像能级及应用价值。方法·回顾性分析2019年1月—2019年6月于上海交通大学医学院附属瑞金医院双层探测器光谱CT上行胰腺动态增强扫描并经手术病理证实为PDAC的60例患者影像资料。扫描完成后均行胰腺实质期、门静脉期常规120 千伏峰值(kilovolt peak,kVp)混合能量图像(polyenergetic image,PI)以及40、50、60和70 keV VMI重建。测量PI以及40、50、60和70 keV VMI中病灶、正常胰腺实质、胰周动静脉及腹壁脂肪的CT值,以腹壁脂肪CT值标准差(standard deviation,SD)为图像噪声值,计算病灶-胰腺实质(caner-pancreas,CA-P)、胰周动脉-病灶(artery-caner,A-CA)、胰周静脉-病灶(vein-caner,V-CA)的对比噪声比(contrast-to-noise ratio,CNR),采用配对t检验与单因素方差分析比较不同期相及不同重建图像中CT值、CNR和图像噪声的差异,并采用Bonferroni 法进行组内两两比较。基于病灶-胰腺实质对比度、病灶边界清晰度、图像总体质量对各组图像进行主观评分,采用Wilcoxon检验与Friedman检验进行不同期相及不同重建图像组间对比。结果·胰腺实质期各组图像中CNRCA-P,及病灶-胰腺实质对比度、病灶边界清晰度主观评分优于门静脉期(均P<0.05)。不同能级VMI中,CNRCA-P、CNRA-CA、CNRV-CA随着能级的降低而明显升高,而图像噪声随着能级降低轻度升高(均P=0.000)。VMI40 keV图像中CNRCA-P、CNRA-CA、CNRV-CA值最高,而图像噪声仍低于PI(均P=0.000)。VMI40 keV各图像质量主观评分不低于PI。结论·双层探测器光谱CT VMI40 keV能够明显提高PDAC病灶-胰腺实质、胰周血管-病灶对比噪声比,且拥有较高图像质量,能够优化PDAC成像与术前评估。

本文引用格式

杨琰昭 , 常蕊 , 王晴柔 , 朱乃懿 , 李若坤 , 柴维敏 , 严福华 . 双层探测器光谱CT虚拟单能量图像在胰腺导管腺癌术前评估中的优化研究[J]. 上海交通大学学报(医学版), 2022 , 42(9) : 1323 -1328 . DOI: 10.3969/j.issn.1674-8115.2022.09.020

Abstract

Objective ·To explore the optimal energy level of virtual monoenergetic images (VMIs) derived from a dual-layer spectral detector computed tomography (CT) and its application value in the preoperative evaluation of pancreatic ductal adenocarcinoma (PDAC). Methods ·From January 2019 to June 2019, the images of sixty patients who underwent pancreas dynamic enhanced scanning on a dual-layer spectral detector CT and were pathologically confirmed of PDAC in Ruijin Hospital, Shanghai Jiao Tong University School of Medicine were retrospectively analyzed. The conventional 120 kVp polyenergetic image (PI), and 40, 50, 60, and 70 keV VMIs were generated. The CT values of lesions, normal pancreatic parenchyma, peripheral pancreatic arteries and veins, and abdominal subcutaneous fat were measured, and the contrast-to-noise ratios (CNRs) of cancer-pancreatic parenchyma (CA-P), artery-cancer (A-CA), and vein-cancer (V-CA) were calculated with the standard deviation (SD) of abdominal subcutaneous fat CT value as image noise. The differences were analyzed by using paired t test and one‐way ANOVA test. Pairwise comparisons within groups were performed by using the Bonferroni method. Subjective scores were obtained based on the lesion-pancreatic parenchyma contrast, lesion boundary definition, and the overall image quality, and compared by using Wilcoxon test and Friedman test. Results ·Among PI and all VMIs, the CNRCA-P and the subjective scores of lesion-pancreas parenchyma contrast and the lesion boundary definition in pancreatic parenchymal phase were higher than those in portal vein phase (all P=0.000). The CNRCA-P , CNRA-CA, and CNRV-CA of VMIs increased significantly as the energy level decreased from 70 keV to 40 keV, while the image noise only subtly increased (all P=0.000). The VMI40 keV had the highest CNRCA-P , CNRA-CA, and CNRV-CA with lower image noise than PI (all P=0.000). The subjective scores of VMI40 keV were not lower than PI. Conclusion ·The VMI40 keV derived from the dual-layer spectral detector CT performs a better image quality, and can significantly improve the CNRCA-P , CNRA-CA, and CNRV-CA, which can optimize the preoperative imaging and the evaluation of pancreatic ductal adenocarcinoma.

参考文献

1 中国抗癌协会胰腺癌专业委员会. 胰腺癌综合诊治指南(2018版)[J]. 临床肝胆病杂志, 2018, 34(10): 2109-2120.
1 Pancreatic Cancer Committee of Chinese Anti-Cancer Association. Comprehensive guidelines for the diagnosis and treatment of pancreatic cancer (2018 version)[J]. J Clin Hepatol, 2018, 34(10): 2109-2120.
2 TEMPERO M A, MALAFA M P, AL-HAWARY M, et al. Pancreatic adenocarcinoma, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology[J]. J Natl Compr Canc Netw, 2021, 19(4): 439-457.
3 林晓珠, 沈云, 陈克敏. CT能谱成像的基本原理与临床应用研究进展[J]. 中华放射学杂志, 2011, 45(8): 798-800.
3 LIN X Z, SHEN Y, CHEN K M. The basic principles and progress of clinical application of CT spectral imaging[J]. Chin J Radiol, 2011, 45(8): 798-800.
4 PATEL B N, THOMAS J V, LOCKHART M E, et al. Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast[J]. Clin Radiol, 2013, 68(2): 148-154.
5 HE J Z, WANG Q, MA X X, et al. Dual-energy CT angiography of abdomen with routine concentration contrast agent in comparison with conventional single-energy CT with high concentration contrast agent[J]. Eur J Radiol, 2015, 84(2): 221-227.
6 MCCOLLOUGH C H, LENG S, YU L F, et al. Dual- and multi-energy CT: principles, technical approaches, and clinical applications[J]. Radiology, 2015, 276(3): 637-653.
7 SELLERER T, NO?L P B, PATINO M, et al. Dual-energy CT: a phantom comparison of different platforms for abdominal imaging[J]. Eur Radiol, 2018, 28(7): 2745-2755.
8 GRANT K L, FLOHR T G, KRAUSS B, et al. Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media[J]. Invest Radiol, 2014, 49(9): 586-592.
9 谢环环, 林晓珠, 王晴柔, 等. CT能谱成像在胰腺癌病灶显示中的应用价值[J]. 实用放射学杂志, 2017, 33(5): 750-753.
9 XIE H H, LIN X Z, WANG Q R, et al. Value of CT spectral imaging in demonstration of pancreatic ductal adenocarcinoma[J]. J Pract Radiol, 2017, 33(5): 750-753.
10 RASSOULI N, ETESAMI M, DHANANTWARI A, et al. Detector-based spectral CT with a novel dual-layer technology: principles and applications[J]. Insights Imaging, 2017, 8(6): 589-598.
11 中华医学会放射学分会, 中国医师协会放射医师分会, 安徽省影像临床医学研究中心. 能量CT临床应用中国专家共识[J]. 中华放射学杂志, 2022, 56(5): 476-487.
11 Chinese Society of Radiology of Chinese Medical Association, Chinese Radiologist Association, Research Center of Clinical Medical Imaging of Anhui Province. China expert consensus on clinical application of multi-energy CT[J]. Chin J Radiol, 2022, 56(5): 476-487.
12 PROKESCH R W, CHOW L C, BEAULIEU C F, et al. Isoattenuating pancreatic adenocarcinoma at multi-detector row CT: secondary signs[J]. Radiology, 2002, 224(3): 764-768.
13 ISHIGAMI K, YOSHIMITSU K, IRIE H, et al. Diagnostic value of the delayed phase image for iso-attenuating pancreatic carcinomas in the pancreatic parenchymal phase on multidetector computed tomography[J]. Eur J Radiol, 2009, 69(1): 139-146.
14 KIM J H, PARK S H, YU E S, et al. Visually isoattenuating pancreatic adenocarcinoma at dynamic-enhanced CT: frequency, clinical and pathologic characteristics, and diagnosis at imaging examinations[J]. Radiology, 2010, 257(1): 87-96.
15 YOON S H, LEE J M, CHO J Y, et al. Small (≤20 mm) pancreatic adenocarcinomas: analysis of enhancement patterns and secondary signs with multiphasic multidetector CT[J]. Radiology, 2011, 259(2): 442-452.
16 CHU A J, LEE J M, LEE Y J, et al. Dual-source, dual-energy multidetector CT for the evaluation of pancreatic tumours[J]. Br J Radiol, 2012, 85(1018): e891-e898.
17 BHOSALE P, L E O, BALACHANDRAN A, et al. Quantitative and qualitative comparison of single-source dual-energy computed tomography and 120-kVp computed tomography for the assessment of pancreatic ductal adenocarcinoma[J]. J Comput Assist Tomogr, 2015, 39(6): 907-913.
文章导航

/