收稿日期: 2022-05-09
录用日期: 2022-09-19
网络出版日期: 2022-12-02
基金资助
国家自然科学基金(81870468);上海交通大学转化医学国家重大科技基础设施(上海)开放课题基金(TMSK-2021-109)
Advances in single-cell RNA sequencing in glomerular diseases
Received date: 2022-05-09
Accepted date: 2022-09-19
Online published: 2022-12-02
Supported by
National Natural Science Foundation of China(81870468);Foundation of National Facility for Translational Medicine (Shanghai) of Shanghai Jiao Tong University(TMSK-2021-109)
肾小球疾病是导致慢性肾脏病和终末期肾功能衰竭的主要原因。了解肾小球疾病发生和发展的分子机制对于早期识别疾病危险因素、挽救肾功能具有重要意义。肾脏中复杂且高度分化的细胞组成是肾小球疾病研究面临的一大挑战,传统测序方法无法确定特定细胞的转录变化以及不同类型细胞间的相互作用。近年来,单细胞RNA测序(single-cell RNA sequencing, scRNA-seq )技术发展迅速,可用于研究肾脏、尿液以及血液等不同来源细胞群体中单个细胞的基因表达模式。将scRNA-seq应用于肾小球疾病有助于生成全面的肾脏细胞图谱,从细胞层面解析肾小球疾病的复杂机制,开发预警生物标志物和细胞特异性的治疗方法。该文就scRNA-seq技术在临床常见原发性和继发性肾小球疾病中的应用研究进展进行综述。
邢海帆 , 范瑛 . 单细胞RNA测序应用于肾小球疾病研究的进展[J]. 上海交通大学学报(医学版), 2022 , 42(10) : 1458 -1465 . DOI: 10.3969/j.issn.1674-8115.2022.10.012
Glomerular diseases are a leading cause of chronic kidney disease and end-stage renal failure. Understanding the molecular mechanism underlying the initiation and progression of glomerular diseases is important to early identify risk factors for disease development and rescue renal function. The kidney is composed of complex and highly differentiated cells, which is a major challenge in the study of glomerular diseases. Bulk RNA sequencing cannot assess differential transcription or the interactions between cell types. Single-cell RNA sequencing (scRNA-seq) technology has developed rapidly in recent years, making it possible to study a wide range of cell types in kidney, urine and blood. The application of scRNA-seq to glomerular diseases helps to construct a comprehensive cell atlas, elucidate complex cellular and molecular mechanisms, develop efficient and accurate prognostic biomarkers and cell-specific therapies. This review focuses on the latest research advances in scRNA-seq in primary and secondary glomerular diseases.
1 | BALZER M S, ROHACS T, SUSZTAK K. How many cell types are in the kidney and what do they do?[J]. Annu Rev Physiol, 2022, 84: 507-531. |
2 | 陈麒麟, 刘志红. 单细胞RNA测序在肾脏疾病研究中的应用[J]. 肾脏病与透析肾移植杂志, 2019, 28(4): 355-359. |
2 | CHEN Q L, LIU Z H. Single-cell RNA-sequencing in kidney disease[J]. Chin J Nephrol Dial Transpl, 2019, 28(4): 355-359. |
3 | 王梦洁, 董伟, 梁馨苓. 单细胞RNA测序在肾脏疾病研究中的应用与前景[J]. 临床肾脏病杂志, 2021, 21(8): 681-684. |
3 | WANG M J, DONG W, LIANG X L. Applications and prospects of single-cell RNA sequencing for renal disease researches[J]. J Clin Nephrol, 2021, 21(8): 681-684. |
4 | 王鑫瑶, 邓振领, 王悦. 单细胞RNA测序在肾脏领域的研究进展[J]. 临床肾脏病杂志, 2021, 21(2): 153-157. |
4 | WANG X Y, DENG Z L, WANG Y. Research advances of single-cell RNA sequencing in kidney[J]. J Clin Nephrol, 2021, 21(2): 153-157. |
5 | TANG F C, BARBACIORU C, WANG Y Z, et al. mRNA-Seq whole-transcriptome analysis of a single cell [J]. Nat Methods, 2009, 6(5): 377-382. |
6 | 操利超, 巴颖, 张核子. 单细胞测序方法研究进展[J]. 生物信息学, 2022, 20(2): 91-99. |
6 | CAO L C, BA Y, ZHANG H Z. Recent progress in single cell sequencing[J]. Chinese Journal of Bioinformatics, 2022, 20(2): 91-99. |
7 | ZHENG G X Y, TERRY J M, BELGRADER P, et al. Massively parallel digital transcriptional profiling of single cells[J]. Nat Commun, 2017, 8: 14049. |
8 | BIREY F, ANDERSEN J, MAKINSON C D, et al. Assembly of functionally integrated human forebrain spheroids[J]. Nature, 2017, 545(7652): 54-59. |
9 | BUENROSTRO J D, WU B, LITZENBURGER U M, et al. Single-cell chromatin accessibility reveals principles of regulatory variation[J]. Nature, 2015, 523(7561): 486-490. |
10 | REDMOND D, PORAN A, ELEMENTO O. Single-cell TCRseq: paired recovery of entire T-cell alpha and beta chain transcripts in T-cell receptors from single-cell RNAseq[J]. Genome Med, 2016, 8(1): 80. |
11 | STICKELS R R, MURRAY E, KUMAR P, et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2[J]. Nat Biotechnol, 2021, 39(3): 313-319. |
12 | VAN DEN BRINK S C, SAGE F, VéRTESY á, et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations[J]. Nat Methods, 2017, 14(10): 935-936. |
13 | WU H J, KIRITA Y, DONNELLY E L, et al. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis[J]. J Am Soc Nephrol, 2019, 30(1): 23-32. |
14 | LU Y Q, YE Y T, YANG Q Q, et al. Single-cell RNA-sequence analysis of mouse glomerular mesangial cells uncovers mesangial cell essential genes[J]. Kidney Int, 2017, 92(2): 504-513. |
15 | LU Y Q, YE Y T, BAO W D N, et al. Genome-wide identification of genes essential for podocyte cytoskeletons based on single-cell RNA sequencing[J]. Kidney Int, 2017, 92(5): 1119-1129. |
16 | CHEN L H, LEE J W, CHOU C L, et al. Transcriptomes of major renal collecting duct cell types in mouse identified by single-cell RNA-seq[J]. Proc Natl Acad Sci USA, 2017, 114(46): e9989-e9998. |
17 | KARAISKOS N, RAHMATOLLAHI M, BOLTENGAGEN A, et al. A single-cell transcriptome atlas of the mouse Glomerulus[J]. J Am Soc Nephrol, 2018, 29(8): 2060-2068. |
18 | PARK J, SHRESTHA R, QIU C X, et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease[J]. Science, 2018, 360(6390): 758-763. |
19 | STEWART B J, FERDINAND J R, YOUNG M D, et al. Spatiotemporal immune zonation of the human kidney[J]. Science, 2019, 365(6460): 1461-1466. |
20 | DER E, RANABOTHU S, SURYAWANSHI H, et al. Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis[J]. JCI Insight, 2017, 2(9) : e93009. |
21 | ARAZI A, RAO D A, BERTHIER C C, et al. The immune cell landscape in kidneys of patients with lupus nephritis[J]. Nat Immunol, 2019, 20(7): 902-914. |
22 | DER E, SURYAWANSHI H, MOROZOV P, et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways[J]. Nat Immunol, 2019, 20(7): 915-927. |
23 | FAVA A, BUYON J, MOHAN C, et al. Integrated urine proteomics and renal single-cell genomics identify an IFN-γ response gradient in lupus nephritis[J]. JCI Insight, 2020, 5(12): e138345. |
24 | ZHANG T, LI H, VANARSA K, et al. Association of urine sCD163 with proliferative lupus nephritis, fibrinoid necrosis, cellular crescents and intrarenal M2 macrophages[J]. Front Immunol, 2020, 11: 671. |
25 | VANARSA K, SOOMRO S, ZHANG T, et al. Quantitative planar array screen of 1 000 proteins uncovers novel urinary protein biomarkers of lupus nephritis[J]. Ann Rheum Dis, 2020, 79(10): 1349-1361. |
26 | FAVA A, RAO D A, MOHAN C, et al. Urine proteomics and renal single-cell transcriptomics implicate interleukin-16 in lupus nephritis[J]. Arthritis Rheumatol, 2022, 74(5): 829-839. |
27 | DENG Y Y, ZHENG Y, LI D L, et al. Expression characteristics of interferon-stimulated genes and possible regulatory mechanisms in lupus patients using transcriptomics analyses[J]. EBioMedicine, 2021, 70: 103477. |
28 | FU J, AKAT K M, SUN Z G, et al. Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease[J]. J Am Soc Nephrol, 2019, 30(4): 533-545. |
29 | SEMBACH F E, AGIDIUS H M, FINK L N, et al. Integrative transcriptomic profiling of a mouse model of hypertension-accelerated diabetic kidney disease[J]. Dis Model Mech, 2021, 14(10): dmm049086. |
30 | WU C H, TAO Y J, LI N, et al. Prediction of cellular targets in diabetic kidney diseases with single-cell transcriptomic analysis of db/db mouse kidneys[J]. J Cell Commun Signal, 2022.doi: 10.1007/s12079-022-006-85-z. |
31 | WILSON P C, WU H J, KIRITA Y, et al. The single-cell transcriptomic landscape of early human diabetic nephropathy[J]. Proc Natl Acad Sci USA, 2019, 116(39): 19619-19625. |
32 | WILSON P C, MUTO Y, WU H J, et al. Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression[J]. Nat Commun, 2022, 13(1): 5253. |
33 | ABEDINI A, ZHU Y O, CHATTERJEE S, et al. Urinary single-cell profiling captures the cellular diversity of the kidney[J]. J Am Soc Nephrol, 2021, 32(3): 614-27. |
34 | WU J S, SUN Z G, YANG S M, et al. Kidney single-cell transcriptome profile reveals distinct response of proximal tubule cells to SGLT2i and ARB treatment in diabetic mice[J]. Mol Ther, 2022, 30(4): 1741-1753. |
35 | WU H J, GONZALEZ VILLALOBOS R, YAO X, et al. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies[J]. Cell Metab, 2022, 34(7): 1064-1078.e6. |
36 | WYATT R J, JULIAN B A. IgA nephropathy[J]. N Engl J Med, 2013, 368(25): 2402-2414. |
37 | ZHENG Y, LU P, DENG Y Y, et al. Single-cell transcriptomics reveal immune mechanisms of the onset and progression of IgA nephropathy[J]. Cell Rep, 2020, 33(12): 108525. |
38 | TANG R, MENG T, LIN W, et al. A partial picture of the single-cell transcriptomics of human IgA nephropathy[J]. Front Immunol, 2021, 12: 645988. |
39 | ZAMBRANO S, HE LQ, KANO T, et al. Molecular insights into the early stage of glomerular injury in IgA nephropathy using single-cell RNA sequencing[J]. Kidney Int, 2022, 101(4): 752-765. |
40 | ZENG H H, WANG L, LI J J, et al. Single-cell RNA-sequencing reveals distinct immune cell subsets and signaling pathways in IgA nephropathy[J]. Cell Biosci, 2021, 11(1): 203. |
41 | MENON R, OTTO E A, HOOVER P, et al. Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker[J]. JCI Insight, 2020, 5(6): e133267. |
42 | LATT K Z, HEYMANN J, JESSEE J H, et al. Urine single-cell RNA sequencing in focal segmental glomerulosclerosis reveals inflammatory signatures[J]. Kidney Int Rep, 2021, 7(2): 289-304. |
43 | XU J, SHEN C J, LIN W, et al. Single-cell profiling reveals transcriptional signatures and cell-cell crosstalk in anti-PLA2R positive idiopathic membranous nephropathy patients[J]. Front Immunol, 2021, 12: 683330. |
44 | SEALFON R, MARIANI L, AVILA-CASADO C, et al. Molecular characterization of membranous nephropathy[J]. J Am Soc Nephrol, 2022, 33(6): 1208-1221. |
45 | KAYA-OKUR H S, WU S J, CODOMO C A, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells[J]. Nat Commun, 2019, 10(1): 1930. |
46 | SMALLWOOD S A, LEE H J, ANGERMUELLER C, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity[J]. Nat Methods, 2014, 11(8): 817-820. |
47 | NAGANO T, LUBLING Y, STEVENS T J, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure[J]. Nature, 2013, 502(7469): 59-64. |
48 | STOECKIUS M, HAFEMEISTER C, STEPHENSON W, et al. Simultaneous epitope and transcriptome measurement in single cells[J]. Nat Methods, 2017, 14(9): 865-868. |
49 | PARK J, LIU C L, KIM J, et al. Understanding the kidney one cell at a time[J]. Kidney Int, 2019, 96(4): 862-870. |
50 | YANG C, XIA S, ZHANG W, et al. Modulation of Atg genes expression in aged rat liver, brain, and kidney by caloric restriction analyzed via single-nucleus/cell RNA sequencing[J]. Autophagy, 2022: 2022Jun2310. |
51 | DENG Y Y, DA J J, YU J L, et al. Single-cell RNA sequencing data analysis suggests the cell-cell interaction patterns of the pituitary-kidney axis[J]. Sci Rep, 2022, 12(1): 11147. |
52 | CHEN J Y, HUANG X R, YANG F Y, et al. Single-cell RNA sequencing identified novel Nr4a1+ Ear2+ anti-inflammatory macrophage phenotype under myeloid-TLR4 dependent regulation in anti-glomerular basement membrane (GBM) crescentic glomerulonephritis (cGN)[J]. Adv Sci (Weinh), 2022, 9(18): e2200668. |
53 | GUJARATI N A, LEONARDO A R, VASQUEZ J M, et al. Loss of functional SCO2 attenuates oxidative stress in diabetic kidney disease[J]. Diabetes, 2021. doi: 10.2337/db21-0316. |
/
〈 |
|
〉 |