综述

肌盲样蛋白1在恶性肿瘤中作用的研究进展

  • 朱楠 ,
  • 刘炳亚 ,
  • 俞焙秦
展开
  • 上海交通大学医学院附属瑞金医院普外科,上海市胃肿瘤重点实验室,上海消化外科研究所,上海 200025
朱 楠(1997—),女,硕士生;电子信箱:znzhunan@sjtu.edu.cn
俞焙秦,电子信箱:yubeiqin@126.com

收稿日期: 2022-03-28

  录用日期: 2022-09-15

  网络出版日期: 2022-12-02

基金资助

国家自然科学基金(81902393);上海市自然科学基金(19ZR1431700);上海交通大学医工交叉研究基金(YG2019QNB23)

Advances in the role of muscle blind-like protein 1 in malignant tumors

  • Nan ZHU ,
  • Bingya LIU ,
  • Beiqin YU
Expand
  • Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
YU Beiqin, E-mail: yubeiqin@126.com.

Received date: 2022-03-28

  Accepted date: 2022-09-15

  Online published: 2022-12-02

Supported by

National Natural Science Foundation of China(81902393);Natural Science Foundation of Shanghai(19ZR1431700);Interdisciplinary Program of Shanghai Jiao Tong University(YG2019QNB23)

摘要

肌盲样蛋白1(muscle blind-like protein 1,MBNL1)是一种RNA结合蛋白,其作为前体信使RNA(precursor mRNA,pre-mRNA)的可变剪接因子,在发育过程中起调节作用,有助于对特定转录集的转录后调控。MBNL1可以影响RNA成熟和表达过程的多个步骤,包括pre-mRNA的剪接、降解、RNA输出、稳定性维持、修饰和翻译等。MBNL1最早被认为是强直性肌营养不良发病机制的相关因子,随着研究的深入,其在多种非肿瘤性疾病以及肿瘤性疾病中的作用逐渐凸显。研究表明,MBNL1在多种疾病中表达异常,并且与恶性肿瘤如胃癌、结直肠癌、乳腺癌、前列腺癌、脑胶质瘤、肺癌、血液系统肿瘤等的发生、发展以及转移密切相关。由于细胞种类和发育环境的不同,正常细胞和肿瘤细胞中MBNL1蛋白水平的变化具有多样性。MBNL1既可作为转录激活因子促进肿瘤的发生与发展,也可作为转录阻遏因子抑制肿瘤的生长、转移等过程,在恶性肿瘤的发病过程中发挥重要作用。该文就MBNL1在肿瘤发生发展中的分子机制、生物学特性及其在不同恶性肿瘤中的表达和功能进行综述,为肿瘤的靶向治疗及预后评估提供新的研究思路。

本文引用格式

朱楠 , 刘炳亚 , 俞焙秦 . 肌盲样蛋白1在恶性肿瘤中作用的研究进展[J]. 上海交通大学学报(医学版), 2022 , 42(10) : 1474 -1481 . DOI: 10.3969/j.issn.1674-8115.2022.10.014

Abstract

Muscle blind-like protein 1 (MBNL1) is a class of RNA binding protein. As an alternative splicing factor of precursor mRNA (pre-mRNA), it plays a fundamental role in the regulation of the development process and the post transcriptional regulation of specific transcripts, which affects multiple steps in the process of RNA maturation and expression, including pre-mRNA splicing, degradation, RNA output, stability maintenance, modification and translation. MBNL1 was first considered as a contributing factor in the pathogenesis of myotonic dystrophy. With going deep into the research, its role in a variety of non-tumor and tumor diseases has become increasingly prominent. Studies have shown that MBNL1 is abnormally expressed in many types of tumors and is closely related to the occurrence, development and metastasis of various malignant tumors, such as gastric cancer, colorectal cancer, breast cancer, prostate cancer, glioblastoma, lung cancer, hematological system tumors, etc. According to different cell types and development environments, the changes of MBNL1 protein levels in normal and tumor cells are diverse. MBNL1 can not only act as a transcriptional activator to promote the occurrence and development of tumors, but also play as a transcriptional repressor to inhibit the growth and metastasis of tumors. The present review summarizes the molecular mechanism, biological characteristics, expression and function of MBNL1 in the occurrence and development of various malignancies to provide several new insights into tumor-targeted therapy and prognosis evaluation.

参考文献

1 BEGEMANN G, PARICIO N, ARTERO R, et al. Muscleblind, a gene required for photoreceptor differentiation in Drosophila, encodes novel nuclear Cys3His-type zinc-finger-containing proteins[J]. Development, 1997, 124(21): 4321-4331.
2 TEPLOVA M, PATEL D J. Structural insights into RNA recognition by the alternative-splicing regulator muscleblind-like MBNL1[J]. Nat Struct Mol Biol, 2008, 15(12): 1343-1351.
3 HO T H, CHARLET B N, POULOS M G, et al. Muscleblind proteins regulate alternative splicing[J]. EMBO J, 2004, 23(15): 3103-3112.
4 FERNANDEZ-COSTA J M, LLAMUSI M B, GARCIA-LOPEZ A, et al. Alternative splicing regulation by Muscleblind proteins: from development to disease[J]. Biol Rev Camb Philos Soc, 2011, 86(4): 947-958.
5 WANG E T, CODY N A L, JOG S, et al. Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins[J]. Cell, 2012, 150(4): 710-724.
6 KANADIA R N, URBINATI C R, CRUSSELLE V J, et al. Developmental expression of mouse muscleblind genes Mbnl1, Mbnl2 and Mbnl3[J]. Gene Expr Patterns, 2003, 3(4): 459-462.
7 KONIECZNY P, STEPNIAK-KONIECZNA E, SOBCZAK K. MBNL proteins and their target RNAs, interaction and splicing regulation[J]. Nucleic Acids Res, 2014, 42(17): 10873-10887.
8 MASUDA A, ANDERSEN H S, DOKTOR T K, et al. CUGBP1 and MBNL1 preferentially bind to 3' UTRs and facilitate mRNA decay[J]. Sci Rep, 2012, 2: 209.
9 WANG E T, TALIAFERRO J M, LEE J A, et al. Dysregulation of mRNA localization and translation in genetic disease[J]. J Neurosci, 2016, 36(45): 11418-11426.
10 BATRA R, CHARIZANIS K, MANCHANDA M, et al. Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease[J]. Mol Cell, 2014, 56(2): 311-322.
11 GOERS E S, PURCELL J, VOELKER R B, et al. MBNL1 binds GC motifs embedded in pyrimidines to regulate alternative splicing[J]. Nucleic Acids Res, 2010, 38(7): 2467-2484.
12 TRAN H, GOURRIER N, LEMERCIER-NEUILLET C, et al. Analysis of exonic regions involved in nuclear localization, splicing activity, and dimerization of Muscleblind-like-1 isoforms[J]. J Biol Chem, 2011, 286(18): 16435-16446.
13 SZNAJDER ? J, MICHALAK M, TAYLOR K, et al. Mechanistic determinants of MBNL activity[J]. Nucleic Acids Res, 2016, 44(21): 10326-10342.
14 PASCUAL M, VICENTE M, MONFERRER L, et al. The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing[J]. Differentiation, 2006, 74(2/3): 65-80.
15 BROOK J D, MCCURRACH M E, HARLEY H G, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member[J]. Cell, 1992, 68(4): 799-808.
16 LIQUORI C L, RICKER K, MOSELEY M L, et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9[J]. Science, 2001, 293(5531): 864-867.
17 CHENG A W, SHI J H, WONG P, et al. Muscleblind-like 1 (Mbnl1) regulates pre-mRNA alternative splicing during terminal erythropoiesis[J]. Blood, 2014, 124(4): 598-610.
18 ARTERO R, PROKOP A, PARICIO N, et al. The muscleblind gene participates in the organization of Z-bands and epidermal attachments of Drosophila muscles and is regulated by Dmef2[J]. Dev Biol, 1998, 195(2): 131-143.
19 KANADIA R N, JOHNSTONE K A, MANKODI A, et al. A muscleblind knockout model for myotonic dystrophy[J]. Science, 2003, 302(5652): 1978-1980.
20 DAVID C J, MANLEY J L. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged[J]. Genes Dev, 2010, 24(21): 2343-2364.
21 OLTEAN S, BATES D O. Hallmarks of alternative splicing in cancer[J]. Oncogene, 2014, 33(46): 5311-5318.
22 BARALLE F E, GIUDICE J. Alternative splicing as a regulator of development and tissue identity[J]. Nat Rev Mol Cell Biol, 2017, 18(7): 437-451.
23 SEBESTYéN E, SINGH B, MI?ANA B, et al. Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks[J]. Genome Res, 2016, 26(6): 732-744.
24 FISH L, PENCHEVA N, GOODARZI H, et al. Muscleblind-like 1 suppresses breast cancer metastatic colonization and stabilizes metastasis suppressor transcripts[J]. Genes Dev, 2016, 30(4): 386-398.
25 TANG L, ZHAO P, KONG D L. Muscleblind?like 1 destabilizes Snail mRNA and suppresses the metastasis of colorectal cancer cells via the Snail/E?cadherin axis[J]. Int J Oncol, 2019, 54(3): 955-965.
26 ZHENG Z, ZHU H B, WAN Q W, et al. LGN regulates mitotic spindle orientation during epithelial morphogenesis[J]. J Cell Biol, 2010, 189(2): 275-288.
27 HAN H, IRIMIA M, ROSS P J, et al. MBNL proteins repress ES-cell-specific alternative splicing and reprogramming[J]. Nature, 2013, 498(7453): 241-245.
28 GABUT M, SAMAVARCHI-TEHRANI P, WANG X C, et al. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming[J]. Cell, 2011, 147(1): 132-146.
29 VENABLES J P, LAPASSET L, GADEA G, et al. MBNL1 and RBFOX2 cooperate to establish a splicing programme involved in pluripotent stem cell differentiation[J]. Nat Commun, 2013, 4: 2480.
30 JANGI M, SHARP P A. Building robust transcriptomes with master splicing factors[J]. Cell, 2014, 159(3): 487-498.
31 FRIEDMANN-MORVINSKI D, VERMA I M. Dedifferentiation and reprogramming: origins of cancer stem cells[J]. EMBO Rep, 2014, 15(3): 244-253.
32 SALOMONIS N, NELSON B, VRANIZAN K, et al. Alternative splicing in the differentiation of human embryonic stem cells into cardiac precursors[J]. PLoS Comput Biol, 2009, 5(11): e1000553.
33 RAY D, YUN Y C, IDRIS M, et al. A tumor-associated splice-isoform of MAP2K7 drives dedifferentiation in MBNL1-low cancers via JNK activation[J]. Proc Natl Acad Sci U S A, 2020, 117(28): 16391-16400.
34 RAY D, EPSTEIN D M. Tumorigenic de-differentiation: the alternative splicing way[J]. Mol Cell Oncol, 2020, 7(6): 1809959.
35 MARTINEZ N M, AGOSTO L, QIU J S, et al. Widespread JNK-dependent alternative splicing induces a positive feedback loop through CELF2-mediated regulation of MKK7 during T-cell activation[J]. Genes Dev, 2015, 29(19): 2054-2066.
36 ASHWAL-FLUSS R, MEYER M, PAMUDURTI N R, et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1): 55-66.
37 陈学英, 许萍萍, 代娟娟, 等. 环形RNA研究进展[J]. 生命科学, 2015, 27(9): 1125-1132.
37 CHEN X Y, XU P P, DAI J J, et al. Research advances on circular RNAs[J]. Chin Bul Life Sci, 2015, 27(9): 1125-1132.
38 张晓黎, 张颖, 陈国通, 等. 环状RNA在妇科恶性肿瘤中的研究[J]. 医学信息, 2020, 33(3): 38-42.
38 ZHANG X L, ZHANG Y, CHEN G T, et al. Study of circular RNA in gynecological malignancies[J]. Med Inf, 2020, 33(3): 38-42.
39 翁韬, 李桑, 陈雅露, 等. 环状RNA的功能特性与胃癌的发生及诊断[J]. 生命的化学, 2019, 39(4): 665-672.
39 WENG T, LI S, CHEN Y L, et al. Functional characteristics of circular RNAs and the occurrence and diagnosis of gastric cancer[J]. Chem Life, 2019, 39(4): 665-672.
40 郝文娟, 沈志森, 李群, 等. 环状RNA在头颈部肿瘤中的作用[J]. 中国细胞生物学学报, 2017, 39(1): 97-105.
40 HAO W J, SHEN Z S, LI Q, et al. Roles of circular RNA in head and neck cancers[J]. Chin J Cell Biol, 2017, 39(1): 97-105.
41 KRISTENSEN L S, ANDERSEN M S, STAGSTED L V W, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691.
42 徐昊, 方梦蝶, 李超, 等. 新型肿瘤靶标环状RNA的研究进展[J]. 中国医学科学院学报, 2021,43(3):435-444.
42 XU H, FANG M D, LI C, et al. Progress in research on the novel tumor marker circRNA[J]. Acta Acad Med Sin, 2021, 43(3): 435-444.
43 PAMUDURTI N R, BARTOK O, JENS M, et al. Translation of CircRNAs[J]. Mol Cell, 2017, 66(1): 9-21.e7.
44 RYAN B M, ROBLES A I, HARRIS C C. Genetic variation in microRNA networks: the implications for cancer research[J]. Nat Rev Cancer, 2010, 10(6): 389-402.
45 TANG R, QI Q H, WU R R, et al. The polymorphic terminal-loop of pre-miR-1307 binding with MBNL1 contributes to colorectal carcinogenesis via interference with Dicer1 recruitment[J]. Carcinogenesis, 2015, 36(8): 867-875.
46 CHEN W Q, ZHENG R S, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
47 SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
48 CHENG S S, RAY D, LEE R T H, et al. A functional network of gastric-cancer-associated splicing events controlled by dysregulated splicing factors[J]. NAR Genom Bioinform, 2020, 2(2): lqaa013.
49 庞立. 基于差异共表达网络探索胃癌的发病机制及ALEX1在胃癌中的生物学功能及其机制研究[D]. 上海: 上海交通大学, 2017.
49 PANG L. Differential coexpression analysis in gastric carcinogenesis& the role and molecular mechanism of ALEX1 in progression of gastric cancer[D]. Shanghai: Shanghai Jiao Tong University, 2017.
50 The Human Protein Atlas: Expression of MBNL1 in cancer[EB/OL].[2022-03-01]. https://www.proteinatlas.org/ENSG00000152601‐MBNL1/ pathology.
51 SEMENZA G L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology[J]. Annu Rev Pathol, 2014, 9: 47-71.
52 HUAN L, GUO T A, WU Y J, et al. Hypoxia induced LUCAT1/PTBP1 axis modulates cancer cell viability and chemotherapy response[J]. Mol Cancer, 2020, 19(1): 11.
53 TABAGLIO T, LOW D H, TEO W K L, et al. MBNL1 alternative splicing isoforms play opposing roles in cancer[J]. Life Sci Alliance, 2018, 1(5): e201800157.
54 LEE J, KOTLIAROVA S, KOTLIAROV Y, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines[J]. Cancer Cell, 2006, 9(5): 391-403.
55 SINGH S K, CLARKE I D, TERASAKI M, et al. Identification of a cancer stem cell in human brain tumors[J]. Cancer Res, 2003, 63(18): 5821-5828.
56 LATHIA J D, MACK S C, MULKEARNS-HUBERT E E, et al. Cancer stem cells in glioblastoma[J]. Genes Dev, 2015, 29(12): 1203-1217.
57 BAR E E, LIN A, MAHAIRAKI V, et al. Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres[J]. Am J Pathol, 2010, 177(3): 1491-1502.
58 MALIK N, WANG X T, SHAH S, et al. Comparison of the gene expression profiles of human fetal cortical astrocytes with pluripotent stem cell derived neural stem cells identifies human astrocyte markers and signaling pathways and transcription factors active in human astrocytes[J]. PLoS One, 2014, 9(5): e96139.
59 FLEMING V A, GENG C Y, LADD A N, et al. Alternative splicing of the neurofibromatosis type 1 pre-mRNA is regulated by the muscleblind-like proteins and the CUG-BP and ELAV-like factors[J]. BMC Mol Biol, 2012, 13: 35.
60 VOSS D M, SLOAN A, SPINA R, et al. The alternative splicing factor, MBNL1, inhibits glioblastoma tumor initiation and progression by reducing hypoxia-induced stemness[J]. Cancer Res, 2020, 80(21): 4681-4692.
61 TEPLYUK N M, UHLMANN E J, GABRIELY G, et al. Therapeutic potential of targeting microRNA-10b in established intracranial glioblastoma: first steps toward the clinic[J]. EMBO Mol Med, 2016, 8(3): 268-287.
62 茹琴, 李超英. miR-10b对脑胶质瘤恶性生物学行为的调控及其机制[J]. 中国肿瘤生物治疗杂志, 2018, 25(4): 376-381.
62 RU Q, LI C Y. Regulatory effect of miR-10b on the malignant biological behavior of glioma and its mechanism[J]. Chin J Cancer Biothe, 2018, 25(4): 376-381.
63 YU H, XU Q H, LIU F, et al. Identification and validation of long noncoding RNA biomarkers in human non-small-cell lung carcinomas[J]. J Thorac Oncol, 2015, 10(4): 645-654.
64 LI P, XING W Q, XU J L, et al. microRNA-301b-3p downregulation underlies a novel inhibitory role of long non-coding RNA MBNL1-AS1 in non-small cell lung cancer[J]. Stem Cell Res Ther, 2019, 10(1): 144.
65 刘俊霞, 王朝霞. 长非编码RNA在非小细胞肺癌治疗抵抗中的作用及机制研究进展[J]. 现代肿瘤医学, 2021, 29(24): 4414-4418.
65 LIU J X, WANG Z X. Research progress on the role and mechanism of long non-coding RNA in the therapeutic resistance of NSCLC cancer[J]. Modern Oncology, 2021, 29(24): 4414-4418.
66 ROSS M E, MAHFOUZ R, ONCIU M, et al. Gene expression profiling of pediatric acute myelogenous leukemia[J]. Blood, 2004, 104(12): 3679-3687.
67 ARMSTRONG S A, STAUNTON J E, SILVERMAN L B, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia[J]. Nat Genet, 2002, 30(1): 41-47.
68 STAM R W, SCHNEIDER P, HAGELSTEIN J A P, et al. Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants[J]. Blood, 2010, 115(14): 2835-2844.
69 ITSKOVICH S S, GURUNATHAN A, CLARK J, et al. MBNL1 regulates essential alternative RNA splicing patterns in MLL-rearranged leukemia[J]. Nat Commun, 2020, 11(1): 2369.
文章导航

/