收稿日期: 2022-09-01
录用日期: 2022-12-09
网络出版日期: 2023-01-28
基金资助
佑安专科联盟科研专项基金(LM202014)
Construction and evaluation of a nomogram prediction model for bacterial infection in patients with decompensated hepatitis C cirrhosis
Received date: 2022-09-01
Accepted date: 2022-12-09
Online published: 2023-01-28
Supported by
Scientific Research Special Fund of Youan College Union(LM202014)
目的·探讨丙型病毒性肝炎(丙肝)肝硬化失代偿期患者发生细菌感染的影响因素,建立列线图预测模型并进行评价。方法·回顾分析昆明市第三人民医院肝病科2020年1月—2021年12月因丙肝肝硬化住院的失代偿期患者574例,以是否发生细菌感染分为细菌感染组和非细菌感染组。收集患者的一般资料、入院合并症及实验室指标。经单因素分析、最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归筛选变量,采用多因素Logistic回归分析影响因素,据此构建列线图模型并进行验证。采用决策曲线及临床影响曲线(clinical impact curve,CIC)评估模型的临床实际应用价值。结果·纳入患者中28.4%(163/574)的患者发生细菌感染,共191个部位,以自发性细菌性腹膜炎(86/191)和肺部细菌感染(79/191)为主;共分离培养出病原菌78株,以肺炎克雷伯菌(15/78)和大肠埃希菌(15/78)为主。多因素Logistic回归分析显示年龄≥60岁[比值比(odds ratio,OR)=2.054,95%置信区间(confidence interval,CI) 1.104~3.822,P=0.023]、女性(OR=1.701,95%CI 1.112~2.602,P=0.014)、腹水(OR=2.386,95%CI 1.601~3.557,P=0.000)、近2周有创操作史(OR=2.605,95%CI 1.368~4.960,P=0.004)、住院时间≥2周(OR=1.629,95%CI 1.098~2.416,P=0.015)是丙肝肝硬化失代偿期患者发生细菌感染的独立危险因素;输注人血白蛋白(OR=0.324,95%CI 0.194~0.542,P=0.000)和高总胆固醇(total cholesterol,CHOL;OR=0.675,95%CI 0.549~0.830,P=0.000)水平是其保护因素。用以上7个影响因素构建列线图模型,采用受试者工作特征曲线(receiver operator characteristic curve,ROC曲线)分析显示曲线下面积(area under the curve,AUC)为0.736,敏感度80.4%,特异度65.1%。Hosmer-lemeshow检验显示,模型具有较好的拟合度(χ2=9.030,P=0.340)。使用Bootstrap法内部重复抽样1 000次进行验证,平均绝对误差0.010,校正曲线和理想曲线基本拟合,预测值和实际值一致性较好。决策曲线显示列线图模型在高风险阈值(0.040~0.715)范围时,有着一定的临床实用性。CIC显示该列线图模型可进行高风险人群分层预测。结论·研究所构建的列线图模型具有较好的预测性、一致性和临床实用性,可为临床医师初步判断丙肝肝硬化失代偿期患者发生细菌感染的风险提供依据。
薛淋淋 , 李秉翰 , 常丽仙 , 李卫昆 , 刘春云 , 刘立 . 丙型病毒性肝炎肝硬化失代偿期患者发生细菌感染的列线图预测模型构建及评价[J]. 上海交通大学学报(医学版), 2023 , 43(1) : 52 -60 . DOI: 10.3969/j.issn.1674-8115.2023.01.007
Objective ·To explore the influencing factors of bacterial infection in decompensated stage of hepatitis C cirrhosis, and establish a risk prediction model of nomogram. Methods ·A total of 574 patients with decompensated hepatitis C cirrhosis were retrospectively collected from The Third People′s Hospital of Kunming between January 2020 and December 2021, and divided into non-infected and infected groups according to whether bacterial infection occurred. The general information, complications, and laboratory indicators were collected. The variables were screened by univariate analysis, and least absolute shrinkage and selection operator (LASSO) regression, and the nomogram model were constructed and verified by multivariate Logistic regression analysis of influencing factors. The decision curve and clinical impact curve (CIC) were used to evaluate the clinical application value of the model. Results ·Bacterial infections occurred in 28.4% (163/574) of the patients, with a total of 191 sites, mainly including spontaneous bacterial peritonitis (86/191) and pulmonary bacterial infections (79/191). Totally 78 strains of pathogens were isolated and cultured, mainly including Klebsiella pneumoniae (15/78) and Escherichia coli (15/78). Multivariate Logistic regression analysis showed that age ≥60 years [odds ratio (OR)=2.054, 95% confidence interval (CI) 1.104?3.822, P=0.023], female (OR=1.701, 95%CI 1.112?2.602, P=0.014), ascites (OR=2.386, 95%CI 1.601?3.557, P=0.000), history of invasive procedures in the last two weeks (OR=2.605, 95%CI 1.368?4.960, P=0.004), and hospitalization time≥2 weeks (OR=1.629, 95%CI 1.098?2.416, P=0.015) were independent risk factors for bacterial infection in decompensated hepatitis C cirrhosis patients, while infusing human serum albumin (OR=0.324, 95%CI 0.194?0.542, P=0.000) and high level of total cholesterol (OR=0.675, 95%CI 0.549?0.830, P=0.000) were protective factors. The nomogram model was constructed with the above seven influencing factors. Receiver operator characteristic (ROC) curve analysis showed that the area under the curve (AUC) was 0.736 and the sensitivity was 80.4%; and the specificity was 65.1%. Hosmer-lemeshow test showed that the model had a good degree of fit (χ2=9.030, P=0.340). The bootstrap method was used for internal repeated sampling for 1 000 times, the average absolute error was 0.010, the calibration curve and the ideal curve were basically fitted, and the predicted values were in good agreement with the actual values. The decision curve showed that the nomogram model had certain clinical practicability in the high risk threshold range (0.040?0.715). CIC showed that the nomogram model can be used to forecast the high-risk population in different levels. Conclusion ·The nomogram risk prediction model constructed in this study has good predictability, consistency and clinical practicability, and can provide evidence for clinicians to preliminary judge the risk of bacterial infection in patients with decompensated hepatitis C cirrhosis.
1 | 中华人民共和国国家卫生健康委. 中国病毒性肝炎防治规划(2017—2020年)[EB/OL]. (2017-11-10)[2022-09-01]. http://www.nhc.gov.cn/ewebeditor/uploadfile/2017/11/20171113134002475.pdf. |
1 | National Health Commission of the People′s Republic of China. Prevention and control plan of viral hepatitis in China (2017?2020)[EB/OL]. (2017-11-10)[2022-09-01]. http://www.nhc.gov.cn/ewebeditor/uploadfile/2017/11/20171113134002475.pdf. |
2 | HEI F X, YE S D, DING G W, et al. Epidemiological analysis on reported hepatitis C cases in China from 2012 to 2016[J]. Biomed Environ Sci, 2018, 31(10): 773-776. |
3 | PIANO S, SINGH V, CARACENI P, et al. Epidemiology and effects of bacterial infections in patients with cirrhosis worldwide[J]. Gastroenterology, 2019, 156(5): 1368-1380.e10. |
4 | PLEGUEZUELO M, BENITEZ J M, JURADO J, et al. Diagnosis and management of bacterial infections in decompensated cirrhosis[J]. World J Hepatol, 2013, 5(1): 16-25. |
5 | FERNáNDEZ J, PRADO V, TREBICKA J, et al. Multidrug-resistant bacterial infections in patients with decompensated cirrhosis and with acute-on-chronic liver failure in Europe[J]. J Hepatol, 2019, 70(3): 398-411. |
6 | 中华医学会感染病学分会. 终末期肝病合并感染诊治专家共识(2021年版)[J]. 中华肝脏病杂志, 2022, 30(2): 147-158. |
6 | Chinese Society of Infectious Diseases, Chinese Medical Association. Expert consensus on diagnosis and treatment of end-stage liver disease complicated infection (2021 version)[J]. Chinese Journal of Hepatology, 2022, 30(2): 147-158. |
7 | MIKU?A T, SAPU?A M, JAB?O?SKA J, et al. Significance of heparin-binding protein and D-dimers in the early diagnosis of spontaneous bacterial peritonitis[J]. Mediators Inflamm, 2018, 2018: 1969108. |
8 | SPAHR L, MORARD I, HADENGUE A, et al. Procalcitonin is not an accurate marker of spontaneous bacterial peritonitis in patients with cirrhosis[J]. Hepato gastroenterology, 2001, 48(38): 502-505. |
9 | ZHU Y, CHENG H, MIN R, et al. Computed tomography images under the nomogram mathematical prediction model in the treatment of cerebral infarction complicated with nonvalvular atrial fibrillation and the impacts of virus infection[J]. Contrast Media Mol Imaging, 2022, 2022: 3950641. |
10 | LI S Y, YIN C H, CHEN J S, et al. A nomogram for predicting the development of serious bacterial infections in febrile term neonates: a single medical center experience in southern Taiwan[J]. Pediatr Neonatol, 2022, 63(6): 605-612. |
11 | XU X F, LI H W, SHENG Y J, et al. Nomogram for prediction of bronchial mucus plugs in children with Mycoplasma pneumoniae pneumonia[J]. Sci Rep, 2020, 10(1): 4579. |
12 | 中华医学会肝病学分会, 中华医学会感染病学分会. 丙型肝炎防治指南(2019年版)[J]. 实用肝脏病杂志, 2020, 23(1): S33-S52. |
12 | Chinese Society of Hepatology and Chinese Society of Infectious Diseases, Chinese Medical Association. Guidelines for prevention and treatment of hepatitis C (2019 edition)[J]. Journal of Practical Hepatology, 2020, 23(1): S33-S52. |
13 | PIANO S, TONON M, ANGELI P. Changes in the epidemiology and management of bacterial infections in cirrhosis[J]. Clin Mol Hepatol, 2021, 27(3): 437-445. |
14 | ALBILLOS A, DE GOTTARDI A, RESCIGNO M. The gut-liver axis in liver disease: pathophysiological basis for therapy[J]. J Hepatol, 2020, 72(3): 558-577. |
15 | 吴柳, 洪灏, 李维正, 等. 肝硬化患者合并细菌感染的临床特征分析[J]. 中国感染与化疗杂志, 2020, 20(6): 601-606. |
15 | WU L, HONG H, LI W Z, et al. Clinical characteristics of bacterial infections in patients with liver cirrhosis[J]. Chinese Journal of Infection and Chemotherapy, 2020, 20(6): 601-606. |
16 | 徐文倩, 吴瑶麒, 张近远, 等. 慢性肝病女性患者绝经后雌激素抗肝纤维化的作用机制[J]. 临床肝胆病杂志, 2021, 37(10): 2425-2428. |
16 | XU W Q, WU Y Q, ZHANG J Y, et al. Mechanism of estrogen against liver fibrosis in postmenopausal women with chronic liver disease[J]. Journal of Clinical Hepatology, 2021, 37(10): 2425-2428. |
17 | KLAIR J S, YANG J D, ABDELMALEK M F, et al. A longer duration of estrogen deficiency increases fibrosis risk among postmenopausal women with nonalcoholic fatty liver disease[J]. Hepatology, 2016, 64(1): 85-91. |
18 | MARTIN MATEOS R, ALBILLOS A. Sepsis in patients with cirrhosis awaiting liver transplantation: new trends and management[J]. Liver Transpl, 2019, 25(11): 1700-1709. |
19 | MARTíNEZ J, HERNáNDEZ-GEA V, RODRíGUEZ-DE-SANTIAGO E, et al. Bacterial infections in patients with acute variceal bleeding in the era of antibiotic prophylaxis[J]. J Hepatol, 2021, 75(2): 342-350. |
20 | 宫能凯, 全斌, 鲁俊, 等. 回归分析失代偿期肝硬化患者医院感染的危险因素[J]. 齐齐哈尔医学院学报, 2021, 42(9): 772-775. |
20 | GONG N K, QUAN B, LU J, et al. Analysis of the risk factors of nosocomial infection among patients with decompensated liver cirrhosis inpatients based on regression analysis[J]. Journal of Qiqihar Medical University, 2021, 42(9): 772-775. |
21 | 徐升, 徐芳, 应丽园, 等. 肝硬化合并上消化道出血患者医院感染的病原学特点及影响因素研究[J]. 中华医院感染学杂志, 2019, 29(1): 71-74. |
21 | XU S, XU F, YING L Y, et al. Etiological charateristics and influencing factor for nosocomial infection in liver cirrhosis patients complicated with upper gastrointestinal hemorrhage[J]. Chinese Journal of Nosocomiology, 2019, 29(1): 71-74. |
22 | ARROYO V, ANGELI P, MOREAU R, et al. The systemic inflammation hypothesis: towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis[J]. J Hepatol, 2021, 74(3): 670-685. |
23 | NING Y X, KIM J K, MIN H K, et al. Cholesterol metabolites alleviate injured liver function and decrease mortality in an LPS-induced mouse model[J]. Metabolism, 2017, 71: 83-93. |
24 | 高鹏, 肖萍, 陈青锋, 等. 慢性乙型肝炎患者血脂水平的影响因素分析[J]. 第二军医大学学报, 2011, 32(12): 1375-1377. |
24 | GAO P, XIAO P, CHEN Q F, et al. Analysis of factors influencing serum lipids of patients with chronic hepatitis B infection[J]. Academic Journal of Second Military Medical University, 2011, 32(12): 1375-1377. |
25 | DELGADO-COELLO B, BRIONES-ORTA M A, MACíAS-SILVA M, et al. Cholesterol: recapitulation of its active role during liver regeneration[J]. Liver Int, 2011, 31(9): 1271-1284. |
26 | 薛永举, 杨丽, 朱玉, 等. 血清白蛋白、胆碱酯酶及凝血酶原活动度对病毒性肝炎肝硬化的诊断价值[J]. 蚌埠医学院学报, 2019, 44(3): 306-308, 313. |
26 | XUE Y J, YANG L, ZHU Y, et al. Value of the serum albumin, cholinesterase and prothrombin activity in the diagnosis of viral hepatitis cirrhosis[J]. Journal of Bengbu Medical College, 2019, 44(3): 306-308, 313. |
27 | 文关良. 肝炎肝硬化患者血清CHE、ALB、CHO水平检测在肝功能评估中的临床应用价值[J]. 检验医学与临床, 2017, 14(18): 2741-2742. |
27 | GUAN W L. Clinical application value of serum CHE, ALB and CHO levels in liver function assessment of patients with hepatitis cirrhosis[J]. Laboratory Medicine and Clinic, 2017, 14(18): 2741-2742. |
28 | DESCHêNES M, VILLENEUVE J P. Risk factors for the development of bacterial infections in hospitalized patients with cirrhosis[J]. Am J Gastroenterol, 1999, 94(8): 2193-2197. |
29 | 谭立明, 丁耀东, 陈娟娟, 等. C1q在自身免疫性疾病中的临床意义[J]. 检验医学, 2017, 32(8): 686-690. |
29 | TAN L M, DING Y D, CHEN J J, et al. Complement 1q determination for autoimmune diseases[J]. Laboratory Medicine, 2017, 32(8): 686-690. |
30 | ZHANG Q, SHI B X, WU L. Characteristics and risk factors of infections in patients with HBV-related acute-on-chronic liver failure: a retrospective study[J]. PeerJ, 2022, 10: e13519. |
31 | 杨慧玲, 刘小静, 何英利, 等. 失代偿期乙型肝炎肝硬化患者发生医院感染临床特点及危险因素分析[J]. 实用肝脏病杂志, 2020, 23(1): 78-81. |
31 | YANG H L, LIU X J, HE Y L, et al.Clinical characteristics of and risk factors for nosocomial infections in patients with hospitalized decompensated hepatitis B liver cirrhosis[J]. Journal of Practical Hepatology, 2020, 23(1): 78-81. |
32 | CHINA L, FREEMANTLE N, FORREST E, et al. A randomized trial of albumin infusions in hospitalized patients with cirrhosis[J]. N Engl J Med, 2021, 384(9): 808-817. |
/
〈 |
|
〉 |