收稿日期: 2022-08-26
录用日期: 2023-01-12
网络出版日期: 2023-02-28
基金资助
陕西省自然科学基础研究计划(2022JQ-907);陕西省高校科协青年人才托举计划项目(20210309);2022年省级大学生创新创业训练计划项目(S202210719089)
Expression and clinical significance of PLA2G2A in kidney renal papillary cell carcinoma
Received date: 2022-08-26
Accepted date: 2023-01-12
Online published: 2023-02-28
Supported by
Natural Science Basic Program of Shaanxi Province(2022JQ-907);Shaanxi University Science and Technology Association Youth Talent Promotion Project(20210309);2022 Provincial College Students Innovation and Entrepreneurship Training Program Project(S202210719089)
目的·探讨ⅡA组磷脂酶A2(phospholipase A2 group ⅡA,PLA2G2A)在肾乳头状细胞癌(kidney renal papillary cell carcinoma,KIRP)中的表达及临床意义,为寻找KIRP靶向治疗靶点提供新的思路。方法·使用SangerBox在线软件分析PLA2G2A在泛癌中的表达水平及其与泛癌预后、免疫浸润的关系。在此基础上,借助UCSC xena数据库分析PLA2G2A在KIRP中的表达水平,并利用UALCAN数据库和TIMER数据库分别分析PLA2G2A与KIRP患者总生存期和免疫浸润的关系。此外,通过LinkedOmics数据库对KIRP中PLA2G2A进行相关基因分析及基因本体论(Gene Ontology,GO)功能分析和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)信号通路富集分析。结果·PLA2G2A在包括KIRP在内的15种来自癌症基因组图谱(The Cancer Genome Atlas,TCGA)数据库的肿瘤样本组织中呈显著低表达,结合基因型-组织表达(Genotype-Tissue Expression,GTEx)数据库进一步发现PLA2G2A在KIRP中显著低表达。同时研究结果显示,PLA2G2A的表达水平与多种肿瘤的预后及免疫浸润密切相关;且PLA2G2A在KIRP中的表达水平越高,患者预后越差、免疫浸润丰度越高。GO功能分析结果显示:KIRP中PLA2G2A在生物过程(biological process,BP)方面主要富集于生物调节和代谢等过程,在细胞组分(cell component,CC)方面主要富集于细胞膜和细胞核等,在分子功能(molecular function,MF)方面主要富集于蛋白质结合和离子结合等。KEGG信号通路富集显示:与PLA2G2A正相关的通路主要富集于细胞周期、核糖体、蛋白酶体、系统性红斑狼疮、抗原加工和提呈等信号通路;与PLA2G2A负相关的通路主要富集于柠檬酸循环、丙酮酸代谢、碳代谢等信号通路。结论·PLA2G2A在KIRP中呈显著低表达,但其在KIRP中的表达水平越高,患者预后越差、免疫浸润丰度越高;KIRP中PLA2G2A正相关通路主要富集于细胞周期、免疫相关通路(如系统性红斑狼疮、抗原加工和提呈)等,其负相关通路主要富集于柠檬酸循环、丙酮酸代谢等。因此,PLA2G2A在KIRP的发生发展中到底发挥抑癌还是促癌作用,还需进一步深入探究。
李芳 , 李凯杨 , 王珏 , 晏睿阳 , 沈慧 , 刘敏 . PLA2G2A在肾乳头状细胞癌中的表达及临床意义[J]. 上海交通大学学报(医学版), 2023 , 43(2) : 152 -161 . DOI: 10.3969/j.issn.1674-8115.2023.02.003
Objective ·To investigate the expression and clinical significance of phospholipase A2 Group ⅡA (PLA2G2A) in kidney renal papillary cell carcinoma (KIRP), and provide new ideas for seeking KIRP targets. Methods ·The expression level of PLA2G2A in pan-cancer and its relationship with prognosis and immune infiltration were analyzed by online software SangerBox. On this basis, the expression level of PLA2G2A in KIRP was analyzed with the help of the UCSC xena database; the correlation between PLA2G2A expression and prognosis and immune infiltration of KIRP were analyzed by using the UALCAN database and the TIMER database, respectively. In addition, the LinkedOmics database was used to analyze the related genes, Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment of PLA2G2A in KIRP. Results ·PLA2G2A was significantly low expressed in 15 tumor samples from The Cancer Genome Atlas (TCGA) including KIRP. It was further validated that PLA2G2A was significantly lower expressed in KIRP with the help of Genotype-Tissue Expression (GTEx) database. The expression level of PLA2G2A was closely related to the prognosis and immune infiltration of various tumors. The higher the expression level of PLA2G2A in KIRP was, the worse the prognosis and the higher the abundance of immune infiltration were. GO analysis showed that PLA2G2A was mainly enriched in biological regulation and metabolic process in biological process (BP), cell membrane and nucleus in cell component (CC), and protein binding and ion binding in molecular function (MF). KEGG pathway enrichment analysis suggested that the pathways positively correlated with PLA2G2A were enriched in ribosome, cell cycle, proteasome, systemic lupus erythematosus and antigen processing and presentation, while the pathways negatively correlated with PLA2G2A were enriched in citrate cycle, pyruvate metabolism, and carbon metabolism. Conclusion ·PLA2G2A is significantly lower expressed in KIRP. Unexpectedly, the higher the expression level of PLA2G2A in KIRP is, the worse the prognosis and the higher the abundance of immune infiltration are. In KIRP, the PLA2G2A positively correlated pathways are mainly enriched in cell cycle and immune-related pathways (such as systemic lupus erythematosus, antigen processing and presentation), while the negatively correlated pathways are mainly concentrated in citric acid cycle and pyruvate metabolism signaling pathways. Thus, it is needed to be further explored whether PLA2G2A plays a role in the development of KIRP as a tumor suppressor or an oncogene.
1 | RHOADES SMITH K E, BILEN M A. A review of papillary renal cell carcinoma and MET inhibitors[J]. Kidney Cancer, 2019, 3(3): 151-161. |
2 | AKINKUOLIE A O, LAWLER P R, CHU A Y, et al. Group ⅡA secretory phospholipase A2, vascular inflammation, and incident cardiovascular disease[J]. Arterioscler Thromb Vasc Biol, 2019, 39(6): 1182-1190. |
3 | SHIN D, CHANG S Y, BOGERE P, et al. Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs[J]. PLoS One, 2019, 14(8): e0220843. |
4 | 孙梅, 姜潇, 王朝晖. PLA2G2A基因在胃癌前病变组织中的表达及意义[J]. 中国医药指南, 2012, 10(34): 175-176. |
4 | SUN M, JIANG X, WANG C H. Expression and significance of PLA2G2A in precancerous tissues of gastric cancer[J]. Guide of China Medicine, 2012, 10(34): 175-176. |
5 | 翟艳春, 魏文强, 何燕, 等. 磷脂酶A2-ⅡA亚型基因rs11677 C/T多态位点基因突变及蛋白表达与食管鳞状细胞癌临床病理特征的关联性研究[J]. 中国全科医学, 2015, 18(12): 1396-1400. |
5 | ZHAI Y C, WEI W Q, HE Y, et al. Association of gene mutation and protein expression of rs11677 C/T polymorphism in phospholipase A2-ⅡA subtype gene with clinicopathological features of esophageal squamous cell carcinoma[J]. Chinese General Practice, 2015, 18(12): 1396-1400. |
6 | FIJNEMAN R J A, CORMIER R T. The roles of sPLA2-ⅡA (Pla2g2a) in cancer of the small and large intestine[J]. Front Biosci, 2008, 13: 4144-4174. |
7 | PRAML C, AMLER L C, DIHLMANN S, et al. Secretory type Ⅱ phospholipase A2 (PLA2G2A) expression status in colorectal carcinoma derived cell lines and in normal colonic mucosa[J]. Oncogene, 1998, 17(15): 2009-2012. |
8 | MACPHEE M, CHEPENIK K P, LIDDELL R A, et al. The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of ApcMin-induced intestinal neoplasia[J]. Cell, 1995, 81(6): 957-966. |
9 | 洪双双. PLAG1和PLA2G2A在肝癌中的异常表达[D]. 郑州: 郑州大学, 2011. |
9 | HONG S S. Abnormal expression of PLAG1 and PLA2G2A in liver cancer[D]. Zhengzhou: Zhengzhou University, 2011. |
10 | GRAFF J R, KONICEK B W, DEDDENS J A, et al. Expression of group Ⅱa secretory phospholipase A2 increases with prostate tumor grade[J]. Clin Cancer Res, 2001, 7(12): 3857-3861. |
11 | 赵久达, 贺菊香, 耿排力. PLA2GⅡA基因在胃癌组织的表达及意义[J]. 山东医药, 2006, 46(10): 24-25. |
11 | ZHAO J D, HE J X, GENG P L. Expression and significance of PLA2GⅡA gene in gastric cancer[J]. Shandong Medical Journal, 2006, 46(10): 24-25. |
12 | GANESAN K, IVANOVA T, WU Y H, et al. Inhibition of gastric cancer invasion and metastasis by PLA2G2A, a novel β-catenin/TCF target gene[J]. Cancer Res, 2008, 68(11): 4277-4286. |
13 | 韩松辰, 殷华奇, 徐涛. 基于肾癌肿瘤微环境的免疫治疗研究进展[J]. 中国医学科学院学报, 2022, 44(2): 305-312. |
13 | HAN S C, YIN H Q, XU T. Research progress of immunotherapy based on tumor microenvironment in renal cell carcinoma[J]. Acta Academiae Medicinae Sinicae, 2022, 44(2): 305-312. |
14 | ZHANG S C, ZHANG E D, LONG J H, et al. Immune infiltration in renal cell carcinoma[J]. Cancer Sci, 2019, 110(5): 1564-1572. |
15 | 殷月玲, 于晓东. 甲状腺癌细针穿刺组织中S100A13、FOXA1表达量与细胞周期、细胞侵袭的相关性[J]. 海南医学院学报, 2018, 24(1): 71-74. |
15 | YIN Y L, YU X D. Correlation of S100A13 and FOXA1 expression with cell cycle and cell invasion in fine needle aspiration tissue of thyroid carcinoma[J]. Journal of Hainan Medical University, 2018, 24(1): 71-74. |
16 | LEVIN G, KOGA B A A, BELCHIOR G G, et al. Production, purification and characterization of recombinant human R-spondin1 (RSPO1) protein stably expressed in human HEK293 cells[J]. BMC Biotechnol, 2020, 20(1): 5. |
17 | 刘鹏, 赵海玲, 马亮, 等. PPARGC1A基因多态性与中国汉族人群2型糖尿病患者肾脏疾病风险的研究[J]. 中国中西医结合肾病杂志, 2020, 21(10): 866-870. |
17 | LIU P, ZHAO H L, MA L, et al. Association of PPARGC1A gene polymorphism with renal disease risk in Chinese Han population with type 2 diabetes mellitus[J]. Chinese Journal of Integrated Traditional and Western Nephrology, 2020, 21(10): 866-870. |
18 | HERZIG S, SHAW R J. AMPK: guardian of metabolism and mitochondrial homeostasis[J]. Nat Rev Mol Cell Biol, 2018, 19(2): 121-135. |
19 | KUEFNER M S, PHAM K, REDD J R, et al. Secretory phospholipase A2 group ⅡA modulates insulin sensitivity and metabolism[J]. J Lipid Res, 2017, 58(9): 1822-1833. |
/
〈 |
|
〉 |