综述

Notch信号通路在骨折愈合过程中作用的研究进展

  • 过丽强 ,
  • 赵世天 ,
  • 舒冰
展开
  • 上海中医药大学附属龙华医院;上海中医药大学、上海市中医药研究院脊柱病研究所;教育部筋骨理论与治法重点实验室,上海 200032
过丽强(1997—),男,硕士生;电子信箱:glqdoctor@163.com
舒 冰,电子信箱:siren17721101@163.com

收稿日期: 2022-03-19

  录用日期: 2022-06-18

  网络出版日期: 2023-02-28

基金资助

国家重点研发计划(2018YFC1704300);国家自然科学基金(81973876);教育部创新团队发展计划(IRT1270);科技部重点领域创新团队项目(2015RA4002)

Research progress in the roles of Notch signaling pathway during fracture healing

  • Liqiang GUO ,
  • Shitian ZHAO ,
  • Bing SHU
Expand
  • Longhua Hospital, Shanghai University of Traditional Chinese Medicine; Spine Institute, Shanghai Academy of Traditional Chinese Medicine; Key Laboratory of Ministry of Education for Theory and Treatment of Bones and Muscles, Shanghai 200032, China
SHU Bing, E-mail: siren17721101@163.com.

Received date: 2022-03-19

  Accepted date: 2022-06-18

  Online published: 2023-02-28

Supported by

National Key R&D Program of China(2018YFC1704300);National Natural Science Foundation of China(81973876);Ministry of Education Innovation Team Development Program(IRT1270);Innovation Team Project in Key Fields of Ministry of Science and Technology(2015RA4002)

摘要

骨折是人类最常见的大器官损伤,从骨折发生至骨重建完成需经历数月甚至更长的时间,严重者可发生延迟愈合甚至骨不连。目前骨折的治疗主要追求完成临床愈合及骨性愈合,愈合过程划分为早、中、晚3期。多种因素影响愈合过程的快慢,其中信号通路和细胞因子在骨折愈合中发挥着重要作用,因此了解信号通路和细胞因子的重要作用对治疗骨折、促进骨折的愈合具有重要意义。近年来研究表明,Notch信号通路可影响骨折愈合过程中的细胞增殖分化、炎症反应、骨重建、血管生成和神经再生等多个环节,且其变化与力学刺激等因素也密切相关,因此了解骨折愈合过程中Notch信号通路分子机制对于治疗骨折疾病、避免延迟性愈合及骨不连具有重要意义。该文从上述细胞增殖分化、炎症反应、骨重建、血管生成、神经再生和力学刺激等多个环节角度分别综述了Notch信号通路在骨折愈合不同环节中作用的研究进展,希冀为骨折愈合治疗提供新的研究思路及治疗策略。

本文引用格式

过丽强 , 赵世天 , 舒冰 . Notch信号通路在骨折愈合过程中作用的研究进展[J]. 上海交通大学学报(医学版), 2023 , 43(2) : 222 -229 . DOI: 10.3969/j.issn.1674-8115.2023.02.012

Abstract

Fracture is the most common large-organ injury in humans. It takes several months or even longer from the onset to the completion of bone reconstruction. In severe cases, delayed healing or even bone discontinuity can occur. The current treatment of fractures mainly pursues the completion of clinical healing and bone healing, and the healing process is divided into three stages: early, intermediate and late. Various factors affect the speed of the healing process, among which signaling pathways and cytokines play an important role in fracture healing, so understanding the important role of signaling pathways and cytokines is important for treating fractures and promoting fracture healing. Recent studies have shown that the Notch signaling pathway can affect cell proliferation and differentiation, inflammatory response, bone reconstruction, angiogenesis and nerve regeneration during fracture healing, and its changes are also closely related to mechanical stimulation and other factors. Therefore, this paper reviews the research progress in the role of Notch signaling pathway in various aspects of fracture healing from the perspectives of cell proliferation and differentiation, inflammatory response, bone reconstruction, angiogenesis, nerve regeneration and mechanical stimulation, and provides new research directions and therapeutic strategies for fracture healing treatment.

参考文献

1 FORTINI M E. Introduction: Notch in development and disease[J]. Semin Cell Dev Biol, 2012, 23(4): 419-420.
2 SIEBEL C, LENDAHL U. Notch signaling in development, tissue homeostasis, and disease[J]. Physiol Rev, 2017, 97(4): 1235-1294.
3 YU J, CANALIS E. Notch and the regulation of osteoclast differentiation and function[J]. Bone, 2020, 138: 115474.
4 SHAYA O, BINSHTOK U, HERSCH M, et al. Cell-cell contact area affects Notch signaling and Notch-dependent patterning[J]. Dev Cell, 2017, 40(5): 505-511.e6.
5 KOPAN R, ILAGAN M X G. The canonical Notch signaling pathway: unfolding the activation mechanism[J]. Cell, 2009, 137(2): 216-233.
6 LI L, TANG P, LI S, et al. Notch signaling pathway networks in cancer metastasis: a new target for cancer therapy[J]. Med Oncol, 2017, 34(10): 180.
7 FAYYAZ S, ATTAR R, XU B J, et al. Realizing the potential of blueberry as natural inhibitor of metastasis and powerful apoptosis inducer: tapping the treasure trove for effective regulation of cell signaling pathways[J]. Anticancer Agents Med Chem, 2020, 20(15): 1780-1786.
8 EINHORN T A, GERSTENFELD L C. Fracture healing: mechanisms and interventions[J]. Nat Rev Rheumatol, 2015, 11(1): 45-54.
9 ONO T, TAKAYANAGI H. Osteoimmunology in bone fracture healing[J]. Curr Osteoporos Rep, 2017, 15(4): 367-375.
10 DISHOWITZ M I, MUTYABA P L, TAKACS J D, et al. Systemic inhibition of canonical Notch signaling results in sustained callus inflammation and alters multiple phases of fracture healing[J]. PLoS One, 2013, 8(7): e68726.
11 NOVAK S, ROEDER E, SINDER B P, et al. Modulation of Notch1 signaling regulates bone fracture healing[J]. J Orthop Res, 2020, 38(11): 2350-2361.
12 WU A C, RAGGATT L J, ALEXANDER K A, et al. Unraveling macrophage contributions to bone repair[J]. Bonekey Rep, 2013, 2: 373.
13 LOI F, CóRDOVA L A, PAJARINEN J, et al. Inflammation, fracture and bone repair[J]. Bone, 2016, 86: 119-130.
14 KEEWAN E, NASER S A. The role of Notch signaling in macrophages during inflammation and infection: implication in rheumatoid arthritis?[J]. Cells, 2020, 9(1): 111.
15 HILTON M J, TU X L, WU X M, et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation[J]. Nat Med, 2008, 14(3): 306-314.
16 ZHANG Q H, WANG C M, LIU Z L, et al. Notch signal suppresses toll-like receptor-triggered inflammatory responses in macrophages by inhibiting extracellular signal-regulated kinase 1/2-mediated nuclear factor κB activation[J]. J Biol Chem, 2012, 287(9): 6208-6217.
17 HALL S R R, JIANG Y J, LEARY E, et al. Identification and isolation of small CD44-negative mesenchymal stem/progenitor cells from human bone marrow using elutriation and polychromatic flow cytometry[J]. Stem Cells Transl Med, 2013, 2(8): 567-578.
18 SONG K, HUANG M Q, SHI Q, et al. Cultivation and identification of rat bone marrow-derived mesenchymal stem cells[J]. Mol Med Rep, 2014, 10(2): 755-760.
19 GU Q L, CAI Y, HUANG C, et al. Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation[J]. Pharmacogn Mag, 2012, 8(31): 202-208.
20 SHAO J, ZHANG W W, YANG T Y. Using mesenchymal stem cells as a therapy for bone regeneration and repairing[J]. Biol Res, 2015, 48(1): 62.
21 DISHOWITZ M I, TERKHORN S P, BOSTIC S A, et al. Notch signaling components are upregulated during both endochondral and intramembranous bone regeneration[J]. J Orthop Res, 2012, 30(2): 296-303.
22 MATTHEWS B G, GRCEVIC D, WANG L P, et al. Analysis of αSMA-labeled progenitor cell commitment identifies Notch signaling as an important pathway in fracture healing[J]. J Bone Miner Res, 2014, 29(5): 1283-1294.
23 WANG C, INZANA J A, MIRANDO A J, et al. NOTCH signaling in skeletal progenitors is critical for fracture repair[J]. J Clin Invest, 2016, 126(4): 1471-1481.
24 MUGURUMA Y, HOZUMI K, WARITA H, et al. Maintenance of bone homeostasis by DLL1-mediated Notch signaling[J]. J Cell Physiol, 2017, 232(9): 2569-2580.
25 SEMENOVA D, BOGDANOVA M, KOSTINA A, et al. Dose-dependent mechanism of Notch action in promoting osteogenic differentiation of mesenchymal stem cells[J]. Cell Tissue Res, 2020, 379(1): 169-179.
26 ZANOTTI S, CANALIS E. Notch1 and Notch2 expression in osteoblast precursors regulates femoral microarchitecture[J]. Bone, 2014, 62: 22-28.
27 ZANOTTI S, SMERDEL-RAMOYA A, STADMEYER L, et al. Notch inhibits osteoblast differentiation and causes osteopenia[J]. Endocrinology, 2008, 149(8): 3890-3899.
28 UGARTE F, RYSER M, THIEME S, et al. Notch signaling enhances osteogenic differentiation while inhibiting adipogenesis in primary human bone marrow stromal cells[J]. Exp Hematol, 2009, 37(7): 867-875.e1.
29 JI Y T, KE Y X, GAO S. Intermittent activation of Notch signaling promotes bone formation[J]. Am J Transl Res, 2017, 9(6): 2933-2944.
30 ZHAO B H, GRIMES S N, LI S S, et al. TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J[J]. J Exp Med, 2012, 209(2): 319-334.
31 CANALIS E, SCHILLING L, YEE S P, et al. Hajdu Cheney mouse mutants exhibit osteopenia, increased osteoclastogenesis, and bone resorption[J]. J Biol Chem, 2016, 291(4): 1538-1551.
32 GOEL P N, MOHARRER Y, HEBB J H, et al. Suppression of Notch signaling in osteoclasts improves bone regeneration and healing[J]. J Orthop Res, 2019, 37(10): 2089-2103.
33 BENEDITO R, ROCA C, S?RENSEN I, et al. The Notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis[J]. Cell, 2009, 137(6): 1124-1135.
34 SAHARA M, HANSSON E M, WERNET O, et al. Manipulation of a VEGF-Notch signaling circuit drives formation of functional vascular endothelial progenitors from human pluripotent stem cells[J]. Cell Res, 2015, 25(1): 148.
35 ZHANG B, PU W T. Notching up vascular regeneration[J]. Cell Res, 2014, 24(7): 777-778.
36 KUSUMBE A P, RAMASAMY S K, ADAMS R H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone[J]. Nature, 2014, 507(7492): 323-328.
37 RAMASAMY S K, KUSUMBE A P, WANG L, et al. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone[J]. Nature, 2014, 507(7492): 376-380.
38 YANG M, LI C J, SUN X, et al. MiR-497~195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1α activity[J]. Nat Commun, 2017, 8: 16003.
39 ZANOTTI S, CANALIS E. Notch signaling and the skeleton[J]. Endocr Rev, 2016, 37(3): 223-253.
40 XU R, YALLOWITZ A, QIN A, et al. Targeting skeletal endothelium to ameliorate bone loss[J]. Nat Med, 2018, 24(6): 823-833.
41 ZHU Y, RUAN Z, LIN Z Y, et al. The association between CD31hiEmcnhi endothelial cells and bone mineral density in Chinese women[J]. J Bone Miner Metab, 2019, 37(6): 987-995.
42 WANG L, ZHOU F, ZHANG P, et al. Human type H vessels are a sensitive biomarker of bone mass[J]. Cell Death Dis, 2017, 8(5): e2760.
43 SHAO J, ZHOU Y H, LIN J Y, et al. Notch expressed by osteocytes plays a critical role in mineralisation[J]. J Mol Med, 2018, 96(3): 333-347.
44 PFLANZ D, BIRKHOLD A I, ALBIOL L, et al. Sost deficiency led to a greater cortical bone formation response to mechanical loading and altered gene expression[J]. Sci Rep, 2017, 7(1): 9435.
45 ZIOUTI F, EBERT R, RUMMLER M, et al. NOTCH signaling is activated through mechanical strain in human bone marrow-derived mesenchymal stromal cells[J]. Stem Cells Int, 2019, 2019: 5150634.
46 MANOKAWINCHOKE J, PAVASANT P, OSATHANON T. Intermittent compressive stress regulates Notch target gene expression via transforming growth factor-β signaling in murine pre-osteoblast cell line[J]. Arch Oral Biol, 2017, 82: 47-54.
47 NIEDERMAIR T, STRAUB R H, BROCHHAUSEN C, et al. Impact of the sensory and sympathetic nervous system on fracture healing in ovariectomized mice[J]. Int J Mol Sci, 2020, 21(2): 405.
48 MIYATA S. Cytoskeletal signal-regulated oligodendrocyte myelination and remyelination[J]. Adv Exp Med Biol, 2019, 1190: 33-42.
49 ARTHUR-FARRAJ P, WANEK K, HANTKE J, et al. Mouse schwann cells need both NRG1 and cyclic AMP to myelinate[J]. Glia, 2011, 59(5): 720-733.
50 WANG J, REN K Y, WANG Y H, et al. Effect of active Notch signaling system on the early repair of rat sciatic nerve injury[J]. Artif Cells Nanomed Biotechnol, 2015, 43(6): 383-389.
51 ZANOTTI S, CANALIS E. Parathyroid hormone inhibits Notch signaling in osteoblasts and osteocytes[J]. Bone, 2017, 103: 159-167.
52 ZANOTTI S, YU J, ADHIKARI S, et al. Glucocorticoids inhibit Notch target gene expression in osteoblasts[J]. J Cell Biochem, 2018, 119(7): 6016-6023.
53 KAMI?SKA A, MAREK S, PARDYAK L, et al. Crosstalk between androgen-ZIP9 signaling and Notch pathway in rodent Sertoli cells[J]. Int J Mol Sci, 2020, 21(21): 8275.
文章导航

/