收稿日期: 2022-07-12
录用日期: 2022-12-16
网络出版日期: 2023-03-28
基金资助
国家自然科学基金(92059205)
Research progress in ferroptosis regulation in the treatment of liver diseases
Received date: 2022-07-12
Accepted date: 2022-12-16
Online published: 2023-03-28
Supported by
National Natural Science Foundation of China(92059205)
铁死亡是由于脂质活性氧自由基累积造成的细胞死亡,以铁依赖的脂质双分子层氧化性损伤为特征。铁积累和脂质过氧化是铁死亡过程中的关键标志。铁稳态、氧化还原稳态、脂质合成等过程失调可影响铁死亡。目前已报道铁死亡的主要调控轴包括胱氨酸/谷氨酸转运体(System Xc-)-谷胱甘肽(glutathione,GSH)-谷胱甘肽过氧化物酶4(glutathione peroxidase 4,GPX4)轴、辅酶Q10(coenzyme Q10,CoQ10)-铁死亡抑制蛋白(ferroptosis suppressor protein 1,FSP1)-泛醇轴、GTP环化水解酶1(GTP cyclohydrolase 1,GCH1)-四氢生物蝶呤(tetrahydrobiopterin,BH4)-二氢叶酸还原酶(dihydrofolate reductase,DHFR)-磷脂轴、二氢乳清酸脱氢酶(dehydrogenase,DHODH)-泛醇轴等。铁死亡被视为重要的细胞死亡形式,在肝细胞癌、肝缺血再灌注损伤、脂肪性肝炎、肝纤维化、肝硬化和肝脏代谢病等多种疾病中发挥重要的作用,清晰阐释铁死亡的分子机制可为上述肝脏疾病的治疗提供潜在靶点。因此,该综述主要概括和探讨铁死亡的分子特征、相关生物学过程、调控途径,以及调控铁死亡在肝脏疾病治疗中的研究现状。
陈晨 , 程卓安 , 王存 , 夏强 . 铁死亡调控在肝脏疾病治疗中的研究进展[J]. 上海交通大学学报(医学版), 2023 , 43(3) : 365 -373 . DOI: 10.3969/j.issn.1674-8115.2023.03.013
Ferroptosis is a form of cell death that results from accumulation of lipid reactive oxygen species, marked by iron-dependent oxidative damage of phospholipids. Accumulation of iron and lipid hydroperoxides are hallmarks of ferroptosis. Diverse biological contexts, including iron handling, redox homeostasis, imbalance of lipid synthesis, participate in ferroptosis. Mechanistically, pathways of ferroptosis regulation involving System Xc--glutathione (GSH)-glutathione peroxidase 4 (GPX4) axis, coenzyme Q10 (CoQ10)-ferroptosis suppressor protein 1 (FSP1)-ubiquinol axis, GTP cyclohydrolase 1 (GCH1)-tetrahydrobiopterin (BH4)-dihydrofolate reductase (DHFR) axis, dehydrogenase (DHODH)-ubiquinol axis have been discovered. Ferroptosis has been implicated in multiple liver diseases, such as hepatocellular carcinoma, liver ischemia-reperfusion injury, steatohepatitis, liver fibrosis, cirrhosis and liver metabolic diseases. Elucidating its mechanism offers various tractable nodes for therapeutic intervention. Here, we summarize insights into the molecular characteristics, biological processes, regulatory pathways of ferroptosis and its recent advances in the treatment of liver diseases.
Key words: ferroptosis; liver disease; lipid peroxidation
1 | DOLMA S, LESSNICK S L, HAHN W C, et al. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells[J]. Cancer Cell, 2003, 3(3): 285-296. |
2 | YANG W S, STOCKWELL B R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells[J]. Chem Biol, 2008, 15(3): 234-245. |
3 | DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. |
4 | XIE Y, HOU W, SONG X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3): 369-379. |
5 | HENTZE M W, MUCKENTHALER M U, GALY B, et al. Two to tango: regulation of mammalian iron metabolism[J]. Cell, 2010, 142(1): 24-38. |
6 | NEMETH E, TUTTLE M S, POWELSON J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization[J]. Science, 2004, 306(5704): 2090-2093. |
7 | ALVAREZ S W, SVIDERSKIY V O, TERZI E M, et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis[J]. Nature, 2017, 551(7682): 639-643. |
8 | TERZI E M, SVIDERSKIY V O, ALVAREZ S W, et al. Iron-sulfur cluster deficiency can be sensed by IRP2 and regulates iron homeostasis and sensitivity to ferroptosis independent of IRP1 and FBXL5[J]. Sci Adv, 2021, 7(22): eabg4302. |
9 | DU J, WANG T, LI Y, et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin[J]. Free Radic Biol Med, 2019, 131: 356-369. |
10 | MA S, HENSON E S, CHEN Y, et al. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells[J]. Cell Death Dis, 2016, 7(7): e2307. |
11 | BROWN C W, AMANTE J J, CHHOY P, et al. Prominin2 drives ferroptosis resistance by stimulating iron export[J]. Dev Cell, 2019, 51(5): 575-586.e4. |
12 | YANG W H, HUANG Z Q, WU J L, et al. A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer[J]. Mol Cancer Res, 2020, 18(1): 79-90. |
13 | CHEN X, XU S, ZHAO C, et al. Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure[J]. Biochem Biophys Res Commun, 2019, 516(1): 37-43. |
14 | YANG W H, DING C C, SUN T, et al. The hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma[J]. Cell Rep, 2019, 28(10): 2501-2508.e4. |
15 | XIE Y, ZHU S, SONG X, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity[J]. Cell Rep, 2017, 20(7): 1692-1704. |
16 | MURI J, KOPF M. Redox regulation of immunometabolism[J]. Nat Rev Immunol, 2021, 21(6): 363-381. |
17 | ZOU Y L, LI H X, GRAHAM E T, et al. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis[J]. Nat Chem Biol, 2020, 16(3): 302-309. |
18 | SUZUKI T, MOTOHASHI H, YAMAMOTO M. Toward clinical application of the Keap1-Nrf2 pathway[J]. Trends Pharmacol Sci, 2013, 34(6): 340-346. |
19 | CONRAD M, PRATT D A. The chemical basis of ferroptosis[J]. Nat Chem Biol, 2019, 15(12): 1137-1147. |
20 | KAGAN V E, MAO G W, QU F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90. |
21 | DIXON S J, WINTER G E, MUSAVI L S, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death[J]. ACS Chem Biol, 2015, 10(7): 1604-1609. |
22 | DOLL S, PRONETH B, TYURINA Y Y, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1): 91-98. |
23 | LAGROST L, MASSON D. The expanding role of lyso-phosphatidylcholine acyltransferase-3 (LPCAT3), a phospholipid remodeling enzyme, in health and disease[J]. Curr Opin Lipidol, 2022, 33(3): 193-198. |
24 | BERSUKER K, HENDRICKS J M, LI Z P, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784): 688-692. |
25 | DOLL S, FREITAS F P, SHAH R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784): 693-698. |
26 | KUHN H, BANTHIYA S, VAN LEYEN K. Mammalian lipoxygenases and their biological relevance[J]. Biochim Biophys Acta, 2015, 1851(4): 308-330. |
27 | KRAFT V A N, BEZJIAN C T, PFEIFFER S, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling[J]. ACS Cent Sci, 2020, 6(1): 41-53. |
28 | GAO M, MONIAN P, QUADRI N, et al. Glutaminolysis and transferrin regulate ferroptosis[J]. Mol Cell, 2015, 59(2): 298-308. |
29 | LEE H, ZANDKARIMI F, ZHANG Y L, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020, 22(2): 225-234. |
30 | SHIN D, LEE J, YOU J H, et al. Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer[J]. Redox Biol, 2020, 30: 101418. |
31 | URSINI F, MAIORINO M, VALENTE M, et al. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides[J]. Biochim Biophys Acta, 1982, 710(2): 197-211. |
32 | URSINI F, MAIORINO M, GREGOLIN C. Phospholipid hydroperoxide glutathione peroxidase[J]. Int J Tissue React, 1986, 8(2): 99-103. |
33 | ALIM I, CAULFIELD JT, CHEN Y, et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke[J]. Cell, 2019, 177(5): 1262-1279.e25. |
34 | VENKATESH D, O'BRIEN N A, ZANDKARIMI F, et al. MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling[J]. Genes Dev, 2020, 34(7/8): 526-543. |
35 | SOULA M, WEBER R A, ZILKA O, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers[J]. Nat Chem Biol, 2020, 16(12): 1351-1360. |
36 | MAO C, LIU X G, ZHANG Y L, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J]. Nature, 2021, 593(7860): 586-590. |
37 | CHEN X, KANG R, KROEMER G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296. |
38 | JIANG L, KON N, LI T Y, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62. |
39 | CHEN D, FAN Z, RAUH M, et al. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner[J]. Oncogene, 2017, 36(40): 5593-5608. |
40 | WU J, MINIKES A M, GAO M H, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling[J]. Nature, 2019, 572(7769): 402-406. |
41 | GAO R Z, KALATHUR R K R, COTO-LLERENA M, et al. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis[J]. EMBO Mol Med, 2021, 13(12): e14351. |
42 | SINGHAL R, MITTA S R, DAS N K, et al. HIF-2α activation potentiates oxidative cell death in colorectal cancers by increasing cellular iron[J]. J Clin Invest, 2021, 131(12): e143691. |
43 | HANGAUER M J, VISWANATHAN V S, RYAN M J, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition[J]. Nature, 2017, 551(7679): 247-250. |
44 | YANG W S, SRIRAMARATNAM R, WELSCH M E, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1/2): 317-331. |
45 | GASCHLER M M, ANDIA A A, LIU H R, et al. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation[J]. Nat Chem Biol, 2018, 14(5): 507-515. |
46 | LOUANDRE C, EZZOUKHRY Z, GODIN C, et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib[J]. Int J Cancer, 2013, 133(7): 1732-1742. |
47 | HADIAN K, STOCKWELL B R. SnapShot: ferroptosis[J]. Cell, 2020, 181(5): 1188-1188.e1. |
48 | VISWANATHAN V S, RYAN M J, DHRUV H D, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway[J]. Nature, 2017, 547(7664): 453-457. |
49 | ELING N, REUTER L, HAZIN J, et al. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells[J]. Oncoscience, 2015, 2(5): 517-532. |
50 | ANGELI J P F, SCHNEIDER M, PRONETH B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nat Cell Biol, 2014, 16(12): 1180-1191. |
51 | TANG B F, ZHU J Y, LI J, et al. The ferroptosis and iron-metabolism signature robustly predicts clinical diagnosis, prognosis and immune microenvironment for hepatocellular carcinoma[J]. Cell Commun Signal, 2020, 18(1): 174. |
52 | KONG R, WANG N, HAN W, et al. IFNγ-mediated repression of system xc- drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells[J]. J Leukoc Biol, 2021, 110(2): 301-314. |
53 | WU S, YANG J, SUN G L, et al. Macrophage extracellular traps aggravate iron overload-related liver ischaemia/reperfusion injury[J]. Br J Pharmacol, 2021, 178(18): 3783-3796. |
54 | YAMADA N, KARASAWA T, WAKIYA T, et al. Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: potential role of ferroptosis[J]. Am J Transplant, 2020, 20(6): 1606-1618. |
55 | LI Y, FENG D C, WANG Z Y, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion[J]. Cell Death Differ, 2019, 26(11): 2284-2299. |
56 | FANG X X, WANG H, HAN D, et al. Ferroptosis as a target for protection against cardiomyopathy[J]. Proc Natl Acad Sci USA, 2019, 116(7): 2672-2680. |
57 | ZHOU Z, YE T J, BONAVITA G, et al. Adipose-specific lipin-1 overexpression renders hepatic ferroptosis and exacerbates alcoholic steatohepatitis in mice[J]. Hepatol Commun, 2019, 3(5): 656-669. |
58 | LI Z Y, AGELLON L B, ALLEN T M, et al. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis[J]. Cell Metab, 2006, 3(5): 321-331. |
59 | NELSON J E, WILSON L, BRUNT E M, et al. Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease[J]. Hepatology, 2011, 53(2): 448-457. |
60 | CHEN X, KANG R, KROEMER G, et al. Ferroptosis in infection, inflammation, and immunity[J]. J Exp Med, 2021, 218(6): e20210518. |
61 | YU Y, JIANG L, WANG H, et al. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis[J]. Blood, 2020, 136(6): 726-739. |
62 | ZHANG Z L, YAO Z, WANG L, et al. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells[J]. Autophagy, 2018, 14(12): 2083-2103. |
63 | WANG H, AN P, XIE E J, et al. Characterization of ferroptosis in murine models of hemochromatosis[J]. Hepatology, 2017, 66(2): 449-465. |
64 | WU A M, FENG B, YU J, et al. Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis[J]. Redox Biol, 2021, 46: 102131. |
65 | ZAMPIERI S, MELLON S H, BUTTERS T D, et al. Oxidative stress in NPC1 deficient cells: protective effect of allopregnanolone[J]. J Cell Mol Med, 2009, 13(9b): 3786-3796. |
66 | VáZQUEZ M C, BALBOA E, ALVAREZ A R, et al. Oxidative stress: a pathogenic mechanism for Niemann-Pick type C disease[J]. Oxid Med Cell Longev, 2012, 2012: 205713. |
67 | FU R, YANJANIN NM, BIANCONI S, et al. Oxidative stress in Niemann-Pick disease, type C[J]. Mol Genet Metab, 2010, 101(2/3): 214-218. |
/
〈 |
|
〉 |