1 |
DOLMA S, LESSNICK S L, HAHN W C, et al. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells[J]. Cancer Cell, 2003, 3(3): 285-296.
|
2 |
YANG W S, STOCKWELL B R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells[J]. Chem Biol, 2008, 15(3): 234-245.
|
3 |
DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
|
4 |
XIE Y, HOU W, SONG X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3): 369-379.
|
5 |
HENTZE M W, MUCKENTHALER M U, GALY B, et al. Two to tango: regulation of mammalian iron metabolism[J]. Cell, 2010, 142(1): 24-38.
|
6 |
NEMETH E, TUTTLE M S, POWELSON J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization[J]. Science, 2004, 306(5704): 2090-2093.
|
7 |
ALVAREZ S W, SVIDERSKIY V O, TERZI E M, et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis[J]. Nature, 2017, 551(7682): 639-643.
|
8 |
TERZI E M, SVIDERSKIY V O, ALVAREZ S W, et al. Iron-sulfur cluster deficiency can be sensed by IRP2 and regulates iron homeostasis and sensitivity to ferroptosis independent of IRP1 and FBXL5[J]. Sci Adv, 2021, 7(22): eabg4302.
|
9 |
DU J, WANG T, LI Y, et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin[J]. Free Radic Biol Med, 2019, 131: 356-369.
|
10 |
MA S, HENSON E S, CHEN Y, et al. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells[J]. Cell Death Dis, 2016, 7(7): e2307.
|
11 |
BROWN C W, AMANTE J J, CHHOY P, et al. Prominin2 drives ferroptosis resistance by stimulating iron export[J]. Dev Cell, 2019, 51(5): 575-586.e4.
|
12 |
YANG W H, HUANG Z Q, WU J L, et al. A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer[J]. Mol Cancer Res, 2020, 18(1): 79-90.
|
13 |
CHEN X, XU S, ZHAO C, et al. Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure[J]. Biochem Biophys Res Commun, 2019, 516(1): 37-43.
|
14 |
YANG W H, DING C C, SUN T, et al. The hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma[J]. Cell Rep, 2019, 28(10): 2501-2508.e4.
|
15 |
XIE Y, ZHU S, SONG X, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity[J]. Cell Rep, 2017, 20(7): 1692-1704.
|
16 |
MURI J, KOPF M. Redox regulation of immunometabolism[J]. Nat Rev Immunol, 2021, 21(6): 363-381.
|
17 |
ZOU Y L, LI H X, GRAHAM E T, et al. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis[J]. Nat Chem Biol, 2020, 16(3): 302-309.
|
18 |
SUZUKI T, MOTOHASHI H, YAMAMOTO M. Toward clinical application of the Keap1-Nrf2 pathway[J]. Trends Pharmacol Sci, 2013, 34(6): 340-346.
|
19 |
CONRAD M, PRATT D A. The chemical basis of ferroptosis[J]. Nat Chem Biol, 2019, 15(12): 1137-1147.
|
20 |
KAGAN V E, MAO G W, QU F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90.
|
21 |
DIXON S J, WINTER G E, MUSAVI L S, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death[J]. ACS Chem Biol, 2015, 10(7): 1604-1609.
|
22 |
DOLL S, PRONETH B, TYURINA Y Y, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1): 91-98.
|
23 |
LAGROST L, MASSON D. The expanding role of lyso-phosphatidylcholine acyltransferase-3 (LPCAT3), a phospholipid remodeling enzyme, in health and disease[J]. Curr Opin Lipidol, 2022, 33(3): 193-198.
|
24 |
BERSUKER K, HENDRICKS J M, LI Z P, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784): 688-692.
|
25 |
DOLL S, FREITAS F P, SHAH R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784): 693-698.
|
26 |
KUHN H, BANTHIYA S, VAN LEYEN K. Mammalian lipoxygenases and their biological relevance[J]. Biochim Biophys Acta, 2015, 1851(4): 308-330.
|
27 |
KRAFT V A N, BEZJIAN C T, PFEIFFER S, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling[J]. ACS Cent Sci, 2020, 6(1): 41-53.
|
28 |
GAO M, MONIAN P, QUADRI N, et al. Glutaminolysis and transferrin regulate ferroptosis[J]. Mol Cell, 2015, 59(2): 298-308.
|
29 |
LEE H, ZANDKARIMI F, ZHANG Y L, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020, 22(2): 225-234.
|
30 |
SHIN D, LEE J, YOU J H, et al. Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer[J]. Redox Biol, 2020, 30: 101418.
|
31 |
URSINI F, MAIORINO M, VALENTE M, et al. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides[J]. Biochim Biophys Acta, 1982, 710(2): 197-211.
|
32 |
URSINI F, MAIORINO M, GREGOLIN C. Phospholipid hydroperoxide glutathione peroxidase[J]. Int J Tissue React, 1986, 8(2): 99-103.
|
33 |
ALIM I, CAULFIELD JT, CHEN Y, et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke[J]. Cell, 2019, 177(5): 1262-1279.e25.
|
34 |
VENKATESH D, O'BRIEN N A, ZANDKARIMI F, et al. MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling[J]. Genes Dev, 2020, 34(7/8): 526-543.
|
35 |
SOULA M, WEBER R A, ZILKA O, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers[J]. Nat Chem Biol, 2020, 16(12): 1351-1360.
|
36 |
MAO C, LIU X G, ZHANG Y L, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J]. Nature, 2021, 593(7860): 586-590.
|
37 |
CHEN X, KANG R, KROEMER G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296.
|
38 |
JIANG L, KON N, LI T Y, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62.
|
39 |
CHEN D, FAN Z, RAUH M, et al. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner[J]. Oncogene, 2017, 36(40): 5593-5608.
|
40 |
WU J, MINIKES A M, GAO M H, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling[J]. Nature, 2019, 572(7769): 402-406.
|
41 |
GAO R Z, KALATHUR R K R, COTO-LLERENA M, et al. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis[J]. EMBO Mol Med, 2021, 13(12): e14351.
|
42 |
SINGHAL R, MITTA S R, DAS N K, et al. HIF-2α activation potentiates oxidative cell death in colorectal cancers by increasing cellular iron[J]. J Clin Invest, 2021, 131(12): e143691.
|
43 |
HANGAUER M J, VISWANATHAN V S, RYAN M J, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition[J]. Nature, 2017, 551(7679): 247-250.
|
44 |
YANG W S, SRIRAMARATNAM R, WELSCH M E, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1/2): 317-331.
|
45 |
GASCHLER M M, ANDIA A A, LIU H R, et al. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation[J]. Nat Chem Biol, 2018, 14(5): 507-515.
|
46 |
LOUANDRE C, EZZOUKHRY Z, GODIN C, et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib[J]. Int J Cancer, 2013, 133(7): 1732-1742.
|
47 |
HADIAN K, STOCKWELL B R. SnapShot: ferroptosis[J]. Cell, 2020, 181(5): 1188-1188.e1.
|
48 |
VISWANATHAN V S, RYAN M J, DHRUV H D, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway[J]. Nature, 2017, 547(7664): 453-457.
|
49 |
ELING N, REUTER L, HAZIN J, et al. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells[J]. Oncoscience, 2015, 2(5): 517-532.
|
50 |
ANGELI J P F, SCHNEIDER M, PRONETH B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nat Cell Biol, 2014, 16(12): 1180-1191.
|
51 |
TANG B F, ZHU J Y, LI J, et al. The ferroptosis and iron-metabolism signature robustly predicts clinical diagnosis, prognosis and immune microenvironment for hepatocellular carcinoma[J]. Cell Commun Signal, 2020, 18(1): 174.
|
52 |
KONG R, WANG N, HAN W, et al. IFNγ-mediated repression of system xc- drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells[J]. J Leukoc Biol, 2021, 110(2): 301-314.
|
53 |
WU S, YANG J, SUN G L, et al. Macrophage extracellular traps aggravate iron overload-related liver ischaemia/reperfusion injury[J]. Br J Pharmacol, 2021, 178(18): 3783-3796.
|
54 |
YAMADA N, KARASAWA T, WAKIYA T, et al. Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: potential role of ferroptosis[J]. Am J Transplant, 2020, 20(6): 1606-1618.
|
55 |
LI Y, FENG D C, WANG Z Y, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion[J]. Cell Death Differ, 2019, 26(11): 2284-2299.
|
56 |
FANG X X, WANG H, HAN D, et al. Ferroptosis as a target for protection against cardiomyopathy[J]. Proc Natl Acad Sci USA, 2019, 116(7): 2672-2680.
|
57 |
ZHOU Z, YE T J, BONAVITA G, et al. Adipose-specific lipin-1 overexpression renders hepatic ferroptosis and exacerbates alcoholic steatohepatitis in mice[J]. Hepatol Commun, 2019, 3(5): 656-669.
|
58 |
LI Z Y, AGELLON L B, ALLEN T M, et al. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis[J]. Cell Metab, 2006, 3(5): 321-331.
|
59 |
NELSON J E, WILSON L, BRUNT E M, et al. Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease[J]. Hepatology, 2011, 53(2): 448-457.
|
60 |
CHEN X, KANG R, KROEMER G, et al. Ferroptosis in infection, inflammation, and immunity[J]. J Exp Med, 2021, 218(6): e20210518.
|
61 |
YU Y, JIANG L, WANG H, et al. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis[J]. Blood, 2020, 136(6): 726-739.
|
62 |
ZHANG Z L, YAO Z, WANG L, et al. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells[J]. Autophagy, 2018, 14(12): 2083-2103.
|
63 |
WANG H, AN P, XIE E J, et al. Characterization of ferroptosis in murine models of hemochromatosis[J]. Hepatology, 2017, 66(2): 449-465.
|
64 |
WU A M, FENG B, YU J, et al. Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis[J]. Redox Biol, 2021, 46: 102131.
|
65 |
ZAMPIERI S, MELLON S H, BUTTERS T D, et al. Oxidative stress in NPC1 deficient cells: protective effect of allopregnanolone[J]. J Cell Mol Med, 2009, 13(9b): 3786-3796.
|
66 |
VÁZQUEZ M C, BALBOA E, ALVAREZ A R, et al. Oxidative stress: a pathogenic mechanism for Niemann-Pick type C disease[J]. Oxid Med Cell Longev, 2012, 2012: 205713.
|
67 |
FU R, YANJANIN NM, BIANCONI S, et al. Oxidative stress in Niemann-Pick disease, type C[J]. Mol Genet Metab, 2010, 101(2/3): 214-218.
|