收稿日期: 2023-01-03
录用日期: 2023-02-28
网络出版日期: 2023-04-28
A case of spinocerebellar ataxia type 28 with orthostatic tremor
Received date: 2023-01-03
Accepted date: 2023-02-28
Online published: 2023-04-28
脊髓小脑性共济失调(spinocerebellar ataxias,SCA)是一组罕见的常染色体遗传的神经退行性疾病,SCA28型是其罕见的亚型,由致病基因AFG3L2的杂合突变引起。临床上通常表现为缓慢进行性步态和肢体共济失调、构音障碍、下肢反射亢进、凝视诱发的眼球震颤、上睑下垂、眼肌麻痹、踝反射减弱、帕金森综合征、肌张力障碍或认知障碍。该文报道1例伴直立性震颤的SCA28型患者,经基因检测发现患者AFG3L2基因存在c.2098G>A错义突变;同时回顾既往文献,总结79例SCA28型病例的临床症状和致病基因变异情况,以加强临床医师对该病的认识,辅助临床诊断。
汪群峰 , 刘时华 . 伴直立性震颤的脊髓小脑性共济失调28型1例报道[J]. 上海交通大学学报(医学版), 2023 , 43(4) : 514 -518 . DOI: 10.3969/j.issn.1674-8115.2023.04.016
Spinocerebellar ataxia (SCA) is a rare autosomal neurodegenerative disease. SCA28 is a rare subtype, caused by heterozygous mutation of the pathogenic gene AFG3L2. The clinical features usually include slowly progressive gait and limb ataxia, dysarthria, hyperreflexia of the lower limbs, gaze-evoked nystagmus, ptosis, ophthalmoplegia, decreased ankle reflex, Parkinsonism, dystonia and cognitive impairment. In this paper, a case of SCA28 with orthostatic tremor is reported. The gene detection showed that there was a missense mutation of c. 2098G>A in the AFG3L2 gene of the patient. The clinical symptoms and pathogenic gene mutations of 79 cases of SCA28 type in the previous relevant literature are summarized to strengthen the understanding and clinical diagnosis of the disease.
Key words: spinocerebellar ataxia; AFG3L2 gene; missense mutation; m-AAA protease
1 | PAULSON H L, SHAKKOTTAI V G, CLARK H B, et al. Polyglutamine spinocerebellar ataxias:from genes to potential treatments[J]. Nat Rev Neurosci, 2017, 18(10): 613-626. |
2 | TULLI S, DEL BONDIO A, BADERNA V, et al. Pathogenic variants in the AFG3L2 proteolytic domain cause SCA28 through haploinsufficiency and proteostatic stress-driven OMA1 activation[J]. J Med Genet, 2019, 56(8): 499-511. |
3 | SVENSTRUP K, NIELSEN T T, AIDT F, et al. SCA28: novel mutation in the AFG3L2 proteolytic domain causes a mild cerebellar syndrome with selective type-1 muscle fiber atrophy[J]. Cerebellum, 2017, 16(1): 62-67. |
4 | SOONG B W, MORRISON P J. Spinocerebellar ataxias[J]. Handb Clin Neurol, 2018, 155: 143-174. |
5 | MANTO M, GANDINI J, FEIL K, et al. Cerebellar ataxias: an update[J]. Curr Opin Neurol, 2020, 33(1): 150-160. |
6 | RUANO L, MELO C, SILVA M C, et al. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies[J]. Neuroepidemiology, 2014, 42(3): 174-183. |
7 | CAGNOLI C, MARIOTTI C, TARONI F, et al. SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-Q11.2[J]. Brain, 2006, 129(1): 235-242. |
8 | DI BELLA D, LAZZARO F, BRUSCO A, et al. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28[J]. Nat Genet, 2010, 42(4): 313-321. |
9 | EDENER U, W?LLNER J, HEHR U, et al. Early onset and slow progression of SCA28, a rare dominant ataxia in a large four-generation family with a novel AFG3L2 mutation[J]. Eur J Hum Genet, 2010, 18(8): 965-968. |
10 | MARIOTTI C, BRUSCO A, DI BELLA D, et al. Spinocerebellar ataxia type 28: a novel autosomal dominant cerebellar ataxia characterized by slow progression and ophthalmoparesis[J]. Cerebellum, 2008, 7(2): 184-188. |
11 | CAGNOLI C, STEVANIN G, BRUSSINO A, et al. Missense mutations in the AFG3L2 proteolytic domain account for 1.5% of European autosomal dominant cerebellar ataxias[J]. Hum Mutat, 2010, 31(10): 1117-1124. |
12 | LIU X, WANG L, CHEN J, et al. Spinocerebellar ataxia type 28 in a Chinese pedigree: a case report and literature review[J]. Medicine (Baltimore), 2021, 100(50): e28008. |
13 | CHIANG H L, FUH J L, TSAI Y S, et al. Expanding the phenotype of AFG3L2 mutations: late-onset autosomal recessive spinocerebellar ataxia[J]. J Neurol Sci, 2021, 428: 117600. |
14 | CALANDRA C R, BUDA G, VISHNOPOLSKA S A, et al. Spastic ataxia with eye-of-the-tiger-like sign in 4 siblings due to novel compound heterozygous AFG3L2 mutation[J]. Parkinsonism Relat Disord, 2020, 73: 52-54. |
15 | TUNC S, DULOVIC-MAHLOW M, BAUMANN H, et al. Spinocerebellar ataxia type 28-phenotypic and molecular characterization of a family with heterozygous and compound-heterozygous mutations in AFG3L2[J]. Cerebellum, 2019, 18(4): 817-822. |
16 | SZPISJAK L, NEMETH V L, SZEPFALUSI N, et al. Neurocognitive characterization of an SCA28 family caused by a novel AFG3L2 gene mutation[J]. Cerebellum, 2017, 16(5/6): 979-985. |
17 | POLITI L S, BIANCHI MARZOLI S, GODI C, et al. MRI evidence of cerebellar and extraocular muscle atrophy differently contributing to eye movement abnormalities in SCA2 and SCA28 diseases[J]. Invest Ophthalmol Vis Sci, 2016, 57(6): 2714-2720. |
18 | ZüHLKE C, MIKAT B, TIMMANN D, et al. Spinocerebellar ataxia 28: a novel AFG3L2 mutation in a German family with young onset, slow progression and saccadic slowing[J]. Cerebellum Ataxias, 2015, 2: 19. |
19 | QU J, WU C K, ZUZUáRREGUI J R, et al. A novel AFG3L2 mutation in a Somalian patient with spinocerebellar ataxia type 28[J]. J Neurol Sci, 2015, 358(1/2): 530-531. |
20 | SMETS K, DECONINCK T, BAETS J, et al. Partial deletion of AFG3L2 causing spinocerebellar ataxia type 28[J]. Neurology, 2014, 82(23): 2092-2100. |
21 | MUSOVA Z, KAISEROVA M, KRIEGOVA E, et al. A novel frameshift mutation in the AFG3L2 gene in a patient with spinocerebellar ataxia[J]. Cerebellum, 2014, 13(3): 331-337. |
22 | L?BBE A M, KANG J S, HILKER R, et al. A novel missense mutation in AFG3L2 associated with late onset and slow progression of spinocerebellar ataxia type 28[J]. J Mol Neurosci, 2014, 52(4): 493-496. |
23 | ALMAJAN E R, RICHTER R, PAEGER L, et al. AFG3L2 supports mitochondrial protein synthesis and Purkinje cell survival[J]. J Clin Invest, 2012, 122(11): 4048-4058. |
24 | BRUSSINO A, BRUSCO A, DURR A, et al. Spinocerebellar ataxia type 28[M]. Seattle: University of Washington, 2018. |
25 | MARIOTTI C, BELLA D D, DI DONATO S, et al. Spinocerebellar ataxia type 28[J]. Handb Clin Neurol, 2012, 103: 575-579. |
/
〈 |
|
〉 |