1 |
PAULSON H L, SHAKKOTTAI V G, CLARK H B, et al. Polyglutamine spinocerebellar ataxias:from genes to potential treatments[J]. Nat Rev Neurosci, 2017, 18(10): 613-626.
|
2 |
TULLI S, DEL BONDIO A, BADERNA V, et al. Pathogenic variants in the AFG3L2 proteolytic domain cause SCA28 through haploinsufficiency and proteostatic stress-driven OMA1 activation[J]. J Med Genet, 2019, 56(8): 499-511.
|
3 |
SVENSTRUP K, NIELSEN T T, AIDT F, et al. SCA28: novel mutation in the AFG3L2 proteolytic domain causes a mild cerebellar syndrome with selective type-1 muscle fiber atrophy[J]. Cerebellum, 2017, 16(1): 62-67.
|
4 |
SOONG B W, MORRISON P J. Spinocerebellar ataxias[J]. Handb Clin Neurol, 2018, 155: 143-174.
|
5 |
MANTO M, GANDINI J, FEIL K, et al. Cerebellar ataxias: an update[J]. Curr Opin Neurol, 2020, 33(1): 150-160.
|
6 |
RUANO L, MELO C, SILVA M C, et al. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies[J]. Neuroepidemiology, 2014, 42(3): 174-183.
|
7 |
CAGNOLI C, MARIOTTI C, TARONI F, et al. SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-Q11.2[J]. Brain, 2006, 129(1): 235-242.
|
8 |
DI BELLA D, LAZZARO F, BRUSCO A, et al. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28[J]. Nat Genet, 2010, 42(4): 313-321.
|
9 |
EDENER U, WÖLLNER J, HEHR U, et al. Early onset and slow progression of SCA28, a rare dominant ataxia in a large four-generation family with a novel AFG3L2 mutation[J]. Eur J Hum Genet, 2010, 18(8): 965-968.
|
10 |
MARIOTTI C, BRUSCO A, DI BELLA D, et al. Spinocerebellar ataxia type 28: a novel autosomal dominant cerebellar ataxia characterized by slow progression and ophthalmoparesis[J]. Cerebellum, 2008, 7(2): 184-188.
|
11 |
CAGNOLI C, STEVANIN G, BRUSSINO A, et al. Missense mutations in the AFG3L2 proteolytic domain account for 1.5% of European autosomal dominant cerebellar ataxias[J]. Hum Mutat, 2010, 31(10): 1117-1124.
|
12 |
LIU X, WANG L, CHEN J, et al. Spinocerebellar ataxia type 28 in a Chinese pedigree: a case report and literature review[J]. Medicine (Baltimore), 2021, 100(50): e28008.
|
13 |
CHIANG H L, FUH J L, TSAI Y S, et al. Expanding the phenotype of AFG3L2 mutations: late-onset autosomal recessive spinocerebellar ataxia[J]. J Neurol Sci, 2021, 428: 117600.
|
14 |
CALANDRA C R, BUDA G, VISHNOPOLSKA S A, et al. Spastic ataxia with eye-of-the-tiger-like sign in 4 siblings due to novel compound heterozygous AFG3L2 mutation[J]. Parkinsonism Relat Disord, 2020, 73: 52-54.
|
15 |
TUNC S, DULOVIC-MAHLOW M, BAUMANN H, et al. Spinocerebellar ataxia type 28-phenotypic and molecular characterization of a family with heterozygous and compound-heterozygous mutations in AFG3L2[J]. Cerebellum, 2019, 18(4): 817-822.
|
16 |
SZPISJAK L, NEMETH V L, SZEPFALUSI N, et al. Neurocognitive characterization of an SCA28 family caused by a novel AFG3L2 gene mutation[J]. Cerebellum, 2017, 16(5/6): 979-985.
|
17 |
POLITI L S, BIANCHI MARZOLI S, GODI C, et al. MRI evidence of cerebellar and extraocular muscle atrophy differently contributing to eye movement abnormalities in SCA2 and SCA28 diseases[J]. Invest Ophthalmol Vis Sci, 2016, 57(6): 2714-2720.
|
18 |
ZÜHLKE C, MIKAT B, TIMMANN D, et al. Spinocerebellar ataxia 28: a novel AFG3L2 mutation in a German family with young onset, slow progression and saccadic slowing[J]. Cerebellum Ataxias, 2015, 2: 19.
|
19 |
QU J, WU C K, ZUZUÁRREGUI J R, et al. A novel AFG3L2 mutation in a Somalian patient with spinocerebellar ataxia type 28[J]. J Neurol Sci, 2015, 358(1/2): 530-531.
|
20 |
SMETS K, DECONINCK T, BAETS J, et al. Partial deletion of AFG3L2 causing spinocerebellar ataxia type 28[J]. Neurology, 2014, 82(23): 2092-2100.
|
21 |
MUSOVA Z, KAISEROVA M, KRIEGOVA E, et al. A novel frameshift mutation in the AFG3L2 gene in a patient with spinocerebellar ataxia[J]. Cerebellum, 2014, 13(3): 331-337.
|
22 |
LÖBBE A M, KANG J S, HILKER R, et al. A novel missense mutation in AFG3L2 associated with late onset and slow progression of spinocerebellar ataxia type 28[J]. J Mol Neurosci, 2014, 52(4): 493-496.
|
23 |
ALMAJAN E R, RICHTER R, PAEGER L, et al. AFG3L2 supports mitochondrial protein synthesis and Purkinje cell survival[J]. J Clin Invest, 2012, 122(11): 4048-4058.
|
24 |
BRUSSINO A, BRUSCO A, DURR A, et al. Spinocerebellar ataxia type 28[M]. Seattle: University of Washington, 2018.
|
25 |
MARIOTTI C, BELLA D D, DI DONATO S, et al. Spinocerebellar ataxia type 28[J]. Handb Clin Neurol, 2012, 103: 575-579.
|