收稿日期: 2023-01-16
录用日期: 2023-05-30
网络出版日期: 2023-06-28
基金资助
上海市教育委员会高峰高原学科建设计划(20161421)
Research progress in autologous regeneration of human corneal endothelial cells
Received date: 2023-01-16
Accepted date: 2023-05-30
Online published: 2023-06-28
Supported by
Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support(20161421)
人角膜内皮细胞(human corneal endothelial cells,HCECs)对于维持角膜透明性非常重要,但胚胎发育后该细胞停滞于细胞周期G1期,常无法进行增殖与再生。伴随着角膜的发育与年龄的增长,HCECs密度不断下降,且全身性因素及眼部疾病又可进一步加剧HCECs的缺失,造成角膜混浊与水肿,最终进展为视力损害。因此,HCECs的再生一直是角膜内皮研究领域的热点。目前,细胞疗法介导的外源性角膜内皮功能重建与内源性HCECs自体再生均已取得了卓有成效的进展,其中HCECs自体再生则是更加便捷且更符合生理学的治疗方案。基于此,该文从手术治疗、基因治疗以及药物治疗这三方面对HCECs自体再生的策略及与之相关的技术进行汇总与分析。
陈瑾 , 傅瑶 . 人角膜内皮细胞自体再生的研究进展[J]. 上海交通大学学报(医学版), 2023 , 43(6) : 775 -780 . DOI: 10.3969/j.issn.1674-8115.2023.06.015
Human corneal endothelial cells (HCECs) are very important for maintaining corneal transparency, but HCECs remain arrested at the G1 phase after embryonic development and could not proliferate and regenerate in vivo. The density of HCECs decreases spontaneously with corneal development and aging, while systemic factors and corneal diseases can further cause a massive loss to HCECs, lead to corneal opacity and edema and ultimately induce vision impairment. Therefore, the regeneration of HCECs has always been a heated topic in the field of corneal endothelial research. Currently, function restoration of exogenous corneal endothelium mediated by cell therapy and autologous regeneration of endogenous HCECs have made amazing breakthroughs, with endogenous HCECs autologous regeneration being a more convenient and physiological treatment option. This review summarizes and analyzes the strategies and related techniques that are currently applied to the autologous regeneration of HCECs in aspects of operative treatment, gene therapy and pharmacological treatment.
1 | CATALà P, THURET G, SKOTTMAN H, et al. Approaches for corneal endothelium regenerative medicine[J]. Prog Retin Eye Res, 2022, 87: 100987. |
2 | 任志超, 李宗义, 谢立信. 人角膜内皮细胞再生的研究进展[J]. 中华眼科杂志, 2022, 58(10): 821-830. |
2 | REN Z C, LI Z Y, XIE L X. Research advances in human corneal endothelial cell regeneration[J]. Chinese Journal of Ophthalmology, 2022, 58(10): 821-830 |
3 | JOYCE N C. Proliferative capacity of corneal endothelial cells[J]. Exp Eye Res, 2012, 95(1): 16-23. |
4 | SIE N M, YAM G H F, SOH Y Q, et al. Regenerative capacity of the corneal transition zone for endothelial cell therapy[J]. Stem Cell Res Ther, 2020, 11(1): 523. |
5 | YAM G H, SEAH X, YUSOFF N Z B M, et al. Characterization of human transition zone reveals a putative progenitor-enriched niche of corneal endothelium[J]. Cells, 2019, 8(10): 1244. |
6 | PRICE M O, MEHTA J S, JURKUNAS U V, et al. Corneal endothelial dysfunction: evolving understanding and treatment options[J]. Prog Retin Eye Res, 2021, 82: 100904. |
7 | DUNKER S L, DICKMAN M M, WISSE R P L, et al. Descemet membrane endothelial keratoplasty versus ultrathin descemet stripping automated endothelial keratoplasty: a multicenter randomized controlled clinical trial[J]. Ophthalmology, 2020, 127(9): 1152-1159. |
8 | DIRISAMER M, YEH R Y, VAN DIJK K, et al. Recipient endothelium may relate to corneal clearance in descemet membrane endothelial transfer[J]. Am J Ophthalmol, 2012, 154(2): 290-296.e1. |
9 | SHAH R D, RANDLEMAN J B, GROSSNIKLAUS H E. Spontaneous corneal clearing after Descemet's stripping without endothelial replacement[J]. Ophthalmology, 2012, 119(2): 256-260. |
10 | BORKAR D S, VELDMAN P, COLBY K A. Treatment of fuchs endothelial dystrophy by descemet stripping without endothelial keratoplasty[J]. Cornea, 2016, 35(10): 1267-1273. |
11 | ONG TONE S, KOCABA V, B?HM M, et al. Fuchs endothelial corneal dystrophy: the vicious cycle of Fuchs pathogenesis[J]. Prog Retin Eye Res, 2021, 80: 100863. |
12 | FUCHSLUGER T A, JURKUNAS U, KAZLAUSKAS A, et al. Anti-apoptotic gene therapy prolongs survival of corneal endothelial cells during storage[J]. Gene Ther, 2011, 18(8): 778-787. |
13 | KAMPIK D, BASCHE M, GEORGIADIS A, et al. Modulation of contact inhibition by ZO-1/ZONAB gene transfer: a new strategy to increase the endothelial cell density of corneal grafts[J]. Invest Ophthalmol Vis Sci, 2019, 60(8): 3170-3177. |
14 | TOYONO T, USUI T, VILLARREAL G Jr, et al. MicroRNA-29b overexpression decreases extracellular matrix mRNA and protein production in human corneal endothelial cells[J]. Cornea, 2016, 35(11): 1466-1470. |
15 | HU J X, RONG Z Y, GONG X, et al. Oligonucleotides targeting TCF4 triplet repeat expansion inhibit RNA foci and mis-splicing in Fuchs' dystrophy[J]. Hum Mol Genet, 2018, 27(6): 1015-1026. |
16 | HU J X, SHEN X L, RIGO F, et al. Duplex RNAs and ss-siRNAs block RNA foci associated with fuchs' endothelial corneal dystrophy[J]. Nucleic Acid Ther, 2019, 29(2): 73-81. |
17 | ZAROUCHLIOTI C, SANCHEZ-PINTADO B, HAFFORD TEAR N J, et al. Antisense therapy for a common corneal dystrophy ameliorates TCF4 repeat expansion-mediated toxicity[J]. Am J Hum Genet, 2018, 102(4): 528-539. |
18 | RONG Z Y, GONG X, HULLEMAN J D, et al. Trinucleotide repeat-targeting dCas9 as a therapeutic strategy for fuchs' endothelial corneal dystrophy[J]. Transl Vis Sci Technol, 2020, 9(9): 47. |
19 | UEHARA H, ZHANG X H, PEREIRA F, et al. Start codon disruption with CRISPR/Cas9 prevents murine Fuchs' endothelial corneal dystrophy[J]. Elife, 2021, 10: e55637. |
20 | 赵靖, 谢立信, 史伟云, 等. 表皮生长因子对猫角膜内皮细胞DNA合成的影响[J]. 眼科研究, 2002, 20(5): 419-422. |
20 | ZHAO J, XIE L X, SHI W Y, et al. Effects of epidermal growth factor on wound healing in cat corneal endothelial culture[J]. Chinese Ophthalmic Research, 2002, 20(5): 419-422. |
21 | PETSOGLOU C, WEN L, HOQUE M, et al. Effects of human platelet lysate on the growth of cultured human corneal endothelial cells[J]. Exp Eye Res, 2021, 208: 108613. |
22 | LEE J G, JUNG E, HEUR M. Fibroblast growth factor 2 induces proliferation and fibrosis via SNAI1-mediated activation of CDK2 and ZEB1 in corneal endothelium[J]. J Biol Chem, 2018, 293(10): 3758-3769. |
23 | 钟一声. 生长因子与角膜内皮细胞[J]. 眼科研究, 1999, 17(4): 314-316. |
23 | ZHONG Y S. Growth factors and corneal endothelium[J]. Chin Ophthal Res, 1999, 17(4): 314-316. |
24 | XIA X, BABCOCK J P, BLABER S I, et al. Pharmacokinetic properties of 2nd-generation fibroblast growth factor-1 mutants for therapeutic application[J]. PLoS One, 2012, 7(11): e48210. |
25 | SYED Z A, RAPUANO C J. Rho kinase (ROCK) inhibitors in the management of corneal endothelial disease[J]. Curr Opin Ophthalmol, 2021, 32(3): 268-274. |
26 | OKUMURA N, UENO M, KOIZUMI N, et al. Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor[J]. Invest Ophthalmol Vis Sci, 2009, 50(8): 3680-3687. |
27 | PIPPARELLI A, ARSENIJEVIC Y, THURET G, et al. ROCK inhibitor enhances adhesion and wound healing of human corneal endothelial cells[J]. PLoS One, 2013, 8(4): e62095. |
28 | KOIZUMI N, OKUMURA N, UENO M, et al. Rho-associated kinase inhibitor eye drop treatment as a possible medical treatment for Fuchs corneal dystrophy[J]. Cornea, 2013, 32(8): 1167-1170. |
29 | OKUMURA N, KOIZUMI N, KAY E P, et al. The ROCK inhibitor eye drop accelerates corneal endothelium wound healing[J]. Invest Ophthalmol Vis Sci, 2013, 54(4): 2493-2502. |
30 | OKUMURA N, INOUE R, OKAZAKI Y, et al. Effect of the Rho kinase inhibitor Y-27632 on corneal endothelial wound healing[J]. Invest Ophthalmol Vis Sci, 2015, 56(10): 6067-6074. |
31 | SCHL?TZER-SCHREHARDT U, ZENKEL M, STRUNZ M, et al. Potential functional restoration of corneal endothelial cells in Fuchs endothelial corneal dystrophy by ROCK inhibitor (ripasudil)[J]. Am J Ophthalmol, 2021, 224: 185-199. |
32 | MOLONEY G, PETSOGLOU C, BALL M, et al. Descemetorhexis without grafting for Fuchs endothelial dystrophy-supplementation with topical ripasudil[J]. Cornea, 2017, 36(6): 642-648. |
33 | SANTERRE K, CORTEZ GHIO S, PROULX S. TGF-β-mediated modulation of cell-cell interactions in postconfluent maturing corneal endothelial cells[J]. Invest Ophthalmol Vis Sci, 2022, 63(11): 3. |
34 | MIN S H, LEE T I, CHUNG Y S, et al. Transforming growth factor-β levels in human aqueous humor of glaucomatous, diabetic and uveitic eyes[J]. Korean J Ophthalmol, 2006, 20(3): 162-165. |
35 | KIM T Y, KIM W I, SMITH R E, et al. Differential activity of TGF-β2 on the expression of p27Kip1 and Cdk4 in actively cycling and contact inhibited rabbit corneal endothelial cells[J]. Mol Vis, 2001, 7: 261-270. |
36 | WILSON S E, SHIJU T M, SAMPAIO L P, et al. Corneal fibroblast collagen type Ⅳ negative feedback modulation of TGF β: a fibrosis modulating system likely active in other organs[J]. Matrix Biol, 2022, 109: 162-172. |
37 | SMERINGAIOVA I, UTHEIM T P, JIRSOVA K. Ex vivo expansion and characterization of human corneal endothelium for transplantation: a review[J]. Stem Cell Res Ther, 2021, 12(1): 554. |
38 | OKUMURA N, HASHIMOTO K, KITAHARA M, et al. Activation of TGF-β signaling induces cell death via the unfolded protein response in Fuchs endothelial corneal dystrophy[J]. Sci Rep, 2017, 7(1): 6801. |
39 | LIU C L, MIYAJIMA T, MELANGATH G, et al. Ultraviolet a light induces DNA damage and estrogen-DNA adducts in Fuchs endothelial corneal dystrophy causing females to be more affected[J]. Proc Natl Acad Sci USA, 2020, 117(1): 573-583. |
40 | KIM E C, MENG H, JUN A S. N-Acetylcysteine increases corneal endothelial cell survival in a mouse model of Fuchs endothelial corneal dystrophy[J]. Exp Eye Res, 2014, 127: 20-25. |
41 | ZIAEI A, SCHMEDT T, CHEN Y, et al. Sulforaphane decreases endothelial cell apoptosis in Fuchs endothelial corneal dystrophy: a novel treatment[J]. Invest Ophthalmol Vis Sci, 2013, 54(10): 6724-6734. |
42 | KIM E C, TOYONO T, BERLINICKE C A, et al. Screening and characterization of drugs that protect corneal endothelial cells against unfolded protein response and oxidative stress[J]. Invest Ophthalmol Vis Sci, 2017, 58(2): 892-900. |
/
〈 |
|
〉 |