1 |
CATALÀ P, THURET G, SKOTTMAN H, et al. Approaches for corneal endothelium regenerative medicine[J]. Prog Retin Eye Res, 2022, 87: 100987.
|
2 |
任志超, 李宗义, 谢立信. 人角膜内皮细胞再生的研究进展[J]. 中华眼科杂志, 2022, 58(10): 821-830.
|
|
REN Z C, LI Z Y, XIE L X. Research advances in human corneal endothelial cell regeneration[J]. Chinese Journal of Ophthalmology, 2022, 58(10): 821-830
|
3 |
JOYCE N C. Proliferative capacity of corneal endothelial cells[J]. Exp Eye Res, 2012, 95(1): 16-23.
|
4 |
SIE N M, YAM G H F, SOH Y Q, et al. Regenerative capacity of the corneal transition zone for endothelial cell therapy[J]. Stem Cell Res Ther, 2020, 11(1): 523.
|
5 |
YAM G H, SEAH X, YUSOFF N Z B M, et al. Characterization of human transition zone reveals a putative progenitor-enriched niche of corneal endothelium[J]. Cells, 2019, 8(10): 1244.
|
6 |
PRICE M O, MEHTA J S, JURKUNAS U V, et al. Corneal endothelial dysfunction: evolving understanding and treatment options[J]. Prog Retin Eye Res, 2021, 82: 100904.
|
7 |
DUNKER S L, DICKMAN M M, WISSE R P L, et al. Descemet membrane endothelial keratoplasty versus ultrathin descemet stripping automated endothelial keratoplasty: a multicenter randomized controlled clinical trial[J]. Ophthalmology, 2020, 127(9): 1152-1159.
|
8 |
DIRISAMER M, YEH R Y, VAN DIJK K, et al. Recipient endothelium may relate to corneal clearance in descemet membrane endothelial transfer[J]. Am J Ophthalmol, 2012, 154(2): 290-296.e1.
|
9 |
SHAH R D, RANDLEMAN J B, GROSSNIKLAUS H E. Spontaneous corneal clearing after Descemet's stripping without endothelial replacement[J]. Ophthalmology, 2012, 119(2): 256-260.
|
10 |
BORKAR D S, VELDMAN P, COLBY K A. Treatment of fuchs endothelial dystrophy by descemet stripping without endothelial keratoplasty[J]. Cornea, 2016, 35(10): 1267-1273.
|
11 |
ONG TONE S, KOCABA V, BÖHM M, et al. Fuchs endothelial corneal dystrophy: the vicious cycle of Fuchs pathogenesis[J]. Prog Retin Eye Res, 2021, 80: 100863.
|
12 |
FUCHSLUGER T A, JURKUNAS U, KAZLAUSKAS A, et al. Anti-apoptotic gene therapy prolongs survival of corneal endothelial cells during storage[J]. Gene Ther, 2011, 18(8): 778-787.
|
13 |
KAMPIK D, BASCHE M, GEORGIADIS A, et al. Modulation of contact inhibition by ZO-1/ZONAB gene transfer: a new strategy to increase the endothelial cell density of corneal grafts[J]. Invest Ophthalmol Vis Sci, 2019, 60(8): 3170-3177.
|
14 |
TOYONO T, USUI T, VILLARREAL G Jr, et al. MicroRNA-29b overexpression decreases extracellular matrix mRNA and protein production in human corneal endothelial cells[J]. Cornea, 2016, 35(11): 1466-1470.
|
15 |
HU J X, RONG Z Y, GONG X, et al. Oligonucleotides targeting TCF4 triplet repeat expansion inhibit RNA foci and mis-splicing in Fuchs' dystrophy[J]. Hum Mol Genet, 2018, 27(6): 1015-1026.
|
16 |
HU J X, SHEN X L, RIGO F, et al. Duplex RNAs and ss-siRNAs block RNA foci associated with fuchs' endothelial corneal dystrophy[J]. Nucleic Acid Ther, 2019, 29(2): 73-81.
|
17 |
ZAROUCHLIOTI C, SANCHEZ-PINTADO B, HAFFORD TEAR N J, et al. Antisense therapy for a common corneal dystrophy ameliorates TCF4 repeat expansion-mediated toxicity[J]. Am J Hum Genet, 2018, 102(4): 528-539.
|
18 |
RONG Z Y, GONG X, HULLEMAN J D, et al. Trinucleotide repeat-targeting dCas9 as a therapeutic strategy for fuchs' endothelial corneal dystrophy[J]. Transl Vis Sci Technol, 2020, 9(9): 47.
|
19 |
UEHARA H, ZHANG X H, PEREIRA F, et al. Start codon disruption with CRISPR/Cas9 prevents murine Fuchs' endothelial corneal dystrophy[J]. Elife, 2021, 10: e55637.
|
20 |
赵靖, 谢立信, 史伟云, 等. 表皮生长因子对猫角膜内皮细胞DNA合成的影响[J]. 眼科研究, 2002, 20(5): 419-422.
|
|
ZHAO J, XIE L X, SHI W Y, et al. Effects of epidermal growth factor on wound healing in cat corneal endothelial culture[J]. Chinese Ophthalmic Research, 2002, 20(5): 419-422.
|
21 |
PETSOGLOU C, WEN L, HOQUE M, et al. Effects of human platelet lysate on the growth of cultured human corneal endothelial cells[J]. Exp Eye Res, 2021, 208: 108613.
|
22 |
LEE J G, JUNG E, HEUR M. Fibroblast growth factor 2 induces proliferation and fibrosis via SNAI1-mediated activation of CDK2 and ZEB1 in corneal endothelium[J]. J Biol Chem, 2018, 293(10): 3758-3769.
|
23 |
钟一声. 生长因子与角膜内皮细胞[J]. 眼科研究, 1999, 17(4): 314-316.
|
|
ZHONG Y S. Growth factors and corneal endothelium[J]. Chin Ophthal Res, 1999, 17(4): 314-316.
|
24 |
XIA X, BABCOCK J P, BLABER S I, et al. Pharmacokinetic properties of 2nd-generation fibroblast growth factor-1 mutants for therapeutic application[J]. PLoS One, 2012, 7(11): e48210.
|
25 |
SYED Z A, RAPUANO C J. Rho kinase (ROCK) inhibitors in the management of corneal endothelial disease[J]. Curr Opin Ophthalmol, 2021, 32(3): 268-274.
|
26 |
OKUMURA N, UENO M, KOIZUMI N, et al. Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor[J]. Invest Ophthalmol Vis Sci, 2009, 50(8): 3680-3687.
|
27 |
PIPPARELLI A, ARSENIJEVIC Y, THURET G, et al. ROCK inhibitor enhances adhesion and wound healing of human corneal endothelial cells[J]. PLoS One, 2013, 8(4): e62095.
|
28 |
KOIZUMI N, OKUMURA N, UENO M, et al. Rho-associated kinase inhibitor eye drop treatment as a possible medical treatment for Fuchs corneal dystrophy[J]. Cornea, 2013, 32(8): 1167-1170.
|
29 |
OKUMURA N, KOIZUMI N, KAY E P, et al. The ROCK inhibitor eye drop accelerates corneal endothelium wound healing[J]. Invest Ophthalmol Vis Sci, 2013, 54(4): 2493-2502.
|
30 |
OKUMURA N, INOUE R, OKAZAKI Y, et al. Effect of the Rho kinase inhibitor Y-27632 on corneal endothelial wound healing[J]. Invest Ophthalmol Vis Sci, 2015, 56(10): 6067-6074.
|
31 |
SCHLÖTZER-SCHREHARDT U, ZENKEL M, STRUNZ M, et al. Potential functional restoration of corneal endothelial cells in Fuchs endothelial corneal dystrophy by ROCK inhibitor (ripasudil)[J]. Am J Ophthalmol, 2021, 224: 185-199.
|
32 |
MOLONEY G, PETSOGLOU C, BALL M, et al. Descemetorhexis without grafting for Fuchs endothelial dystrophy-supplementation with topical ripasudil[J]. Cornea, 2017, 36(6): 642-648.
|
33 |
SANTERRE K, CORTEZ GHIO S, PROULX S. TGF-β-mediated modulation of cell-cell interactions in postconfluent maturing corneal endothelial cells[J]. Invest Ophthalmol Vis Sci, 2022, 63(11): 3.
|
34 |
MIN S H, LEE T I, CHUNG Y S, et al. Transforming growth factor-β levels in human aqueous humor of glaucomatous, diabetic and uveitic eyes[J]. Korean J Ophthalmol, 2006, 20(3): 162-165.
|
35 |
KIM T Y, KIM W I, SMITH R E, et al. Differential activity of TGF-β2 on the expression of p27Kip1 and Cdk4 in actively cycling and contact inhibited rabbit corneal endothelial cells[J]. Mol Vis, 2001, 7: 261-270.
|
36 |
WILSON S E, SHIJU T M, SAMPAIO L P, et al. Corneal fibroblast collagen type Ⅳ negative feedback modulation of TGF β: a fibrosis modulating system likely active in other organs[J]. Matrix Biol, 2022, 109: 162-172.
|
37 |
SMERINGAIOVA I, UTHEIM T P, JIRSOVA K. Ex vivo expansion and characterization of human corneal endothelium for transplantation: a review[J]. Stem Cell Res Ther, 2021, 12(1): 554.
|
38 |
OKUMURA N, HASHIMOTO K, KITAHARA M, et al. Activation of TGF-β signaling induces cell death via the unfolded protein response in Fuchs endothelial corneal dystrophy[J]. Sci Rep, 2017, 7(1): 6801.
|
39 |
LIU C L, MIYAJIMA T, MELANGATH G, et al. Ultraviolet a light induces DNA damage and estrogen-DNA adducts in Fuchs endothelial corneal dystrophy causing females to be more affected[J]. Proc Natl Acad Sci USA, 2020, 117(1): 573-583.
|
40 |
KIM E C, MENG H, JUN A S. N-Acetylcysteine increases corneal endothelial cell survival in a mouse model of Fuchs endothelial corneal dystrophy[J]. Exp Eye Res, 2014, 127: 20-25.
|
41 |
ZIAEI A, SCHMEDT T, CHEN Y, et al. Sulforaphane decreases endothelial cell apoptosis in Fuchs endothelial corneal dystrophy: a novel treatment[J]. Invest Ophthalmol Vis Sci, 2013, 54(10): 6724-6734.
|
42 |
KIM E C, TOYONO T, BERLINICKE C A, et al. Screening and characterization of drugs that protect corneal endothelial cells against unfolded protein response and oxidative stress[J]. Invest Ophthalmol Vis Sci, 2017, 58(2): 892-900.
|