综述

哮喘表型中CD4+ T细胞亚群的研究综述:分子机制和生物治疗选择

  • 赵艳红 ,
  • 王传萍
展开
  • 上海交通大学医学院附属第九人民医院呼吸与危重症医学科,上海 201999
赵艳红(1973—),女,主管护师,学士;电子信箱:gaoqixingao@163.com
王传萍,电子信箱:723157@sh9hospital.org

收稿日期: 2022-12-23

  录用日期: 2023-06-26

  网络出版日期: 2023-08-28

Review of CD4+ T cell subsets in asthma phenotypes: molecular mechanisms and biologic treatment options

  • Yanhong ZHAO ,
  • Chuanping WANG
Expand
  • Department of Pulmonary and Cntical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
WANG Chuanping, E-mail: 723157@sh9hospital.org.

Received date: 2022-12-23

  Accepted date: 2023-06-26

  Online published: 2023-08-28

摘要

哮喘是一种慢性炎症性气道疾病,主要由不同的CD4+ T细胞亚群[辅助性T细胞(helper T cell,Th细胞)]驱动。CD4+ T细胞亚群是一类重要的免疫细胞,能够分泌多种细胞因子,调节机体对各种抗原的免疫反应。根据分泌的细胞因子的不同,CD4+ T细胞可以分为Th1、Th2、Th17、滤泡性辅助性T细胞(follicular helper T cell,Tfh细胞)和调节性T细胞(regulatory T cell,Treg细胞)等亚群,它们在哮喘的发生发展中起着不同的作用。生物治疗是一种针对特定分子和途径的新治疗手段,为哮喘患者提供了更多的选择。生物制剂是一类利用生物技术制备的药物,能够特异性地识别和中和目标分子,从而干预相关的信号通路。该文回顾了各种CD4+ T细胞亚群在哮喘表型中的角色及分子机制,总结了嗜酸性粒细胞哮喘、中性粒细胞哮喘、混合性哮喘的免疫病理学特征和针对Th2、Th1、Th17、Tfh、Treg细胞相关因子的生物制剂的临床效果和安全性,以及相应生物制剂的选择和发展方向;并讨论了Treg细胞受损和树突状细胞(dendritic cell,DC)异常在哮喘发病机制中的作用,以及利用这些细胞的免疫治疗潜力。该文旨在为哮喘生物治疗的个性化选择和新药开发提供参考。

本文引用格式

赵艳红 , 王传萍 . 哮喘表型中CD4+ T细胞亚群的研究综述:分子机制和生物治疗选择[J]. 上海交通大学学报(医学版), 2023 , 43(8) : 1064 -1070 . DOI: 10.3969/j.issn.1674-8115.2023.08.016

Abstract

Asthma is a chronic inflammatory airway disease, mainly driven by different CD4+ T cell subsets [helper T cell (Th cell)]. CD4+ T cell subsets are a type of important immune cells, capable of secreting various cytokines, and regulating the immune response of the body to various antigens. According to the difference of secreted cytokines, CD4+ T cell subsets can be divided into subgroups such as Th1, Th2, Th17, follicular helper T cell (Tfh) and regulatory T cell (Treg), which play different roles in the occurrence and development of asthma. Biologic therapy is a new treatment method that targets specific molecules and pathways, and has provided more options for asthma patients. Biologics is a type of drugs prepared by biotechnology, which can specifically recognize and neutralize target molecules, thereby interfering with related signaling pathways. This article reviews the roles and molecular mechanisms of various CD4+ T cell subsets in asthma phenotypes, summarizes the immunopathological characteristics of eosinophilic asthma, neutrophilic asthma and mixed asthma, the clinical efficacy and safety of biologics targeting Th2, Th1, Th17, Tfh and Treg cell-related factors, and the selection and development direction of corresponding biologics. This article also discusses the role of impaired Treg cells and abnormal dendritic cells (DC cells) in the pathogenesis of asthma, as well as the potential of immunotherapy using these cells. This article aims to provide reference for the personalized selection and new drug development of biologic therapy for asthma.

参考文献

1 WHITEHEAD G S, THOMAS S Y, NAKANO K, et al. A neutrophil/TGF-β axis limits the pathogenicity of allergen-specific CD4+ T cells[J]. JCI Insight, 2022, 7(4): e150251.
2 AL-AZZAM N, ELSALEM L. Leukotriene D4 role in allergic asthma pathogenesis from cellular and therapeutic perspectives[J]. Life Sci, 2020, 260: 118452.
3 GODWIN M S, JONES M, BLACKBURN J P, et al. The chemokine CX3CL1/fractalkine regulates immunopathogenesis during fungal-associated allergic airway inflammation[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 320(3): L393-L404.
4 ZUO Z T, MA Y, SUN Y, et al. The protective effects of Helicobacter pylori infection on allergic asthma[J]. Int Arch Allergy Immunol, 2021, 182(1): 53-64.
5 BUTCHER M J, ZHU J F. Recent advances in understanding the Th1/Th2 effector choice[J]. Fac Rev, 2021, 10: 30.
6 CANARIA D A, CLARE M G, YAN B, et al. IL-1β promotes IL-9-producing Th cell differentiation in IL-2-limiting conditions through the inhibition of BCL6[J]. Front Immunol, 2022, 13: 1032618.
7 YU F, LIN Q, ZHANG Z, et al. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity[J]. Acta Pharm Sin B, 2020, 10(3): 414-433.
8 GERLACH K, POPP V, WIRTZ S, et al. PU.1-driven Th9 cells promote colorectal cancer in experimental colitis models through IL-6 effects in intestinal epithelial cells[J]. J Crohns Colitis, 2022, 16(12): 1893-1910.
9 JEONG J, LEE H K. The role of CD4+ T cells and microbiota in the pathogenesis of asthma[J]. Int J Mol Sci, 2021, 22(21): 11822.
10 GEVAERT P, HAN J K, SMITH S G, et al. The roles of eosinophils and interleukin-5 in the pathophysiology of chronic rhinosinusitis with nasal polyps[J]. Int Forum Allergy Rhinol, 2022, 12(11): 1413-1423.
11 BADRANI J H, DOHERTY T A. Cellular interactions in aspirin-exacerbated respiratory disease[J]. Curr Opin Allergy Clin Immunol, 2021, 21(1): 65-70.
12 BUCHENAUER L, JUNGE K M, HAANGE S B, et al. Glyphosate differentially affects the allergic immune response across generations in mice[J]. Sci Total Environ, 2022, 850: 157973.
13 DROGHINI H R, ABONIA J P, COLLINS M H, et al. Targeted IL-4Rα blockade ameliorates refractory allergic eosinophilic inflammation in a patient with dysregulated TGF-β signaling due to ERBIN deficiency[J]. J Allergy Clin Immunol Pract, 2022, 10(7): 1903-1906.
14 MATSUDA M, TABUCHI Y, NISHIMURA K, et al. Increased expression of CysLT2 receptors in the lung of asthmatic mice and role in allergic responses[J]. Prostaglandins Leukot Essent Fatty Acids, 2018, 131: 24-31.
15 HIGAZI H M K I, HE L, FANG J, et al. Loss of Jak2 protects cardiac allografts from chronic rejection by attenuating Th1 response along with increased regulatory T cells[J]. Am J Transl Res, 2019, 11(2): 624-640.
16 WANG F P, YANG Y H, LI Z X, et al. Mannan-binding lectin regulates the Th17/Treg axis through JAK/STAT and TGF-β/SMAD signaling against Candida albicans infection[J]. J Inflamm Res, 2022, 15: 1797-1810.
17 XIONG D K, SHI X, HAN M M, et al. The regulatory mechanism and potential application of IL-23 in autoimmune diseases[J]. Front Pharmacol, 2022, 13: 982238.
18 DELLA B C, ANTICO A, PANOZZO M P, et al. Gastric Th17 cells specific for H+/K+-ATPase and serum IL-17 signature in gastric autoimmunity[J]. Front Immunol, 2022, 13: 952674.
19 ZHANG B B, ZENG M N, ZHANG Q Q, et al. Ephedrae Herba polysaccharides inhibit the inflammation of ovalbumin induced asthma by regulating Th1/Th2 and Th17/Treg cell immune imbalance[J]. Mol Immunol, 2022, 152: 14-26.
20 LI X L, LUCK M E, HERRNREITER C J, et al. IL-23 promotes neutrophil extracellular trap formation and bacterial clearance in a mouse model of alcohol and burn injury[J]. Immunohorizons, 2022, 6(1): 64-75.
21 FURUE M, FURUE K, TSUJI G, et al. Interleukin-17A and keratinocytes in psoriasis[J]. Int J Mol Sci, 2020, 21(4): 1275.
22 WU M D, LAI T W, JING D, et al. Epithelium-derived IL17A promotes cigarette smoke-induced inflammation and mucus hyperproduction[J]. Am J Respir Cell Mol Biol, 2021, 65(6): 581-592.
23 ZHOU Q L, WANG T Y, LI M, et al. Alleviating airway inflammation by inhibiting ERK-NF-κB signaling pathway by blocking Kv1.3 channels[J]. Int Immunopharmacol, 2018, 63: 110-118.
24 STEWART E, WANG X M, CHUPP G L, et al. Profiling cellular heterogeneity in asthma with single cell multiparameter CyTOF[J]. J Leukoc Biol, 2020, 108(5): 1555-1564.
25 CHEN Q, NIAN S J, YE Y C, et al. The emerging roles of T helper cell subsets and cytokines in severe neutrophilic asthma[J]. Inflammation, 2022, 45(3): 1007-1022.
26 BUSSE W W, LEMANSKE R F Jr, GERN J E. Role of viral respiratory infections in asthma and asthma exacerbations[J]. Lancet, 2010, 376(9743): 826-834.
27 WENZEL S E. Asthma phenotypes: the evolution from clinical to molecular approaches[J]. Nat Med, 2012, 18(5): 716-725.
28 WU Z W, MEHRABI NASAB E, ARORA P, et al. Study effect of probiotics and prebiotics on treatment of OVA-LPS-induced of allergic asthma inflammation and pneumonia by regulating the TLR4/NF-kB signaling pathway[J]. J Transl Med, 2022, 20(1): 130.
29 GAFFIN J M, PHIPATANAKUL W. The role of indoor allergens in the development of asthma[J]. Curr Opin Allergy Clin Immunol, 2009, 9(2): 128-135.
30 HUANG K, REN H Y, LIN B Y, et al. Protective effects of Wuwei Xiaodu Drink against chronic osteomyelitis through Foxp3+CD25+CD4+ Treg cells via the IL-2/STAT5 signaling pathway[J]. Chin J Nat Med, 2022, 20(3): 185-193.
31 ONO M. Control of regulatory T-cell differentiation and function by T-cell receptor signalling and Foxp3 transcription factor complexes[J]. Immunology, 2020, 160(1): 24-37.
32 LLOYD C M, HESSEL E M. Functions of T cells in asthma: more than just Th2 cells[J]. Nat Rev Immunol, 2010, 10(12): 838-848.
33 HINKS T S C, ZHOU X Y, STAPLES K J, et al. Innate and adaptive T cells in asthmatic patients: relationship to severity and disease mechanisms[J]. J Allergy Clin Immunol, 2015, 136(2): 323-333.
34 KORKMAZ E T, AYD?N O, MUNGAN D, et al. Can dose reduction be made in patients with allergic bronchopulmonary aspergillosis receiving high-dose omalizumab treatment?[J]. Eur Ann Allergy Clin Immunol, 2022. DOI: 10.23822/EurAnnACI.1764-1489.261.
35 PRINCIPE S, PORSBJERG C, BOLM D S, et al. Treating severe asthma: targeting the IL-5 pathway[J]. Clin Exp Allergy, 2021, 51(8): 992-1005.
36 KORN S, BOURDIN A, CHUPP G, et al. Integrated safety and efficacy among patients receiving benralizumab for up to 5 years[J]. J Allergy Clin Immunol Pract, 2021, 9(12): 4381-4392.e4.
37 CAMPISI R, CRIMI C, NOLASCO S, et al. Real-world experience with dupilumab in severe asthma: one-year data from an Italian named patient program[J]. J Asthma Allergy, 2021, 14: 575-583.
38 BUSSE W W, BLEECKER E R, et al. Long-term safety and efficacy of benralizumab in patients with severe, uncontrolled asthma: 1-year results from the BORA phase 3 extension trial[J]. Lancet Respir Med, 2019, 7(1): 46-59.
39 NAIR P, PIZZICHINI M M M, KJARSGAARD M, et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia[J]. N Engl J Med, 2009, 360(10): 985-993.
40 ESHWAR V, KAMATH A, SHASTRY R, et al. A review of the safety of interleukin-17A inhibitor secukinumab[J]. Pharmaceuticals (Basel), 2022, 15(11): 1365.
41 KIM T H, KISHIMOTO M, WEI J C, et al. Brodalumab, an anti-interleukin-17 receptor A monoclonal antibody, in axial spondyloarthritis: 68-week results from a phase 3 study[J]. Rheumatology (Oxford), 2023, 62(5): 1851-1859.
42 WOODS R H. Potential cerebrovascular accident signal for risankizumab: a disproportionality analysis of the FDA Adverse Event Reporting System (FAERS)[J]. Brit J Clinical Pharma, 2023, 89(8): 2386-2395.
43 KHAN M A. Regulatory T cells mediated immunomodulation during asthma: a therapeutic standpoint[J]. J Transl Med, 2020, 18(1): 456.
44 EUSEBIO M, KUNA P, KRASZULA L, et al. The relative values of CD8+CD25+Foxp3brigh Treg cells correlate with selected lung function parameters in asthma[J]. Int J Immunopathol Pharmacol, 2015, 28(2): 218-226.
45 SCHREIBER T H, WOLF D, TSAI M S, et al. Therapeutic Treg expansion in mice by TNFRSF25 prevents allergic lung inflammation[J]. J Clin Invest, 2010, 120(10): 3629-3640.
46 LIU P, KANG C L, ZHANG J, et al. The role of dendritic cells in allergic diseases[J]. Int Immunopharmacol, 2022, 113(Pt B): 109449.
47 YU S Q, JIN L, CHE N, et al. Dendritic cells modified with Der p1 antigen as a therapeutic potential for allergic rhinitis in a murine model via regulatory effects on IL-4, IL-10 and IL-13[J]. Int Immunopharmacol, 2019, 70: 216-224.
文章导航

/