前沿述评

人工耳蜗植入术后CT影像学评估的临床价值及进展

  • 顾文汐 ,
  • 贾欢 ,
  • 吴皓
展开
  • 1.上海交通大学医学院附属第九人民医院耳鼻咽喉头颈外科,上海 200011
    2.上海市耳鼻疾病转化医学重点实验室,上海 200125
    3.上海交通大学医学院耳科学研究所,上海 200125
顾文汐(1996—),女,博士生;电子信箱:GU_Wenxi@icloud.com
吴 皓,电子信箱:wuhao@shsmu.edu.cn

收稿日期: 2023-08-30

  录用日期: 2023-11-07

  网络出版日期: 2024-02-01

基金资助

上海市耳鼻疾病转化医学重点实验室(14DZ2260300);上海交通大学医学院转化医学协同创新项目(TM202011);上海交通大学医疗机器人研究院项目(IMR-NPH202001);上海市临床重点专科建设项目(shslczdzk00802);上海申康医院发展中心临床创新三年行动计划(SHDC2020CR1044B)

Clinical values and advances in computed tomography evaluation after cochlear implantation

  • Wenxi GU ,
  • Huan JIA ,
  • Hao WU
Expand
  • 1.Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
    2.Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
    3.Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
WU Hao, E-mail: wuhao@shsmu.edu.cn.

Received date: 2023-08-30

  Accepted date: 2023-11-07

  Online published: 2024-02-01

Supported by

Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300);Translational Medicine Collaborative Innovation Project of Shanghai Jiao Tong University School of Medicine(TM202011);Project of Institute of Medical Robotics of Shanghai Jiao Tong University(IMR-NPH202001);Shanghai Key Clinical Specialty Construction Project(shslczdzk00802);Three-year Action Plan for Clinical Innovation of Shanghai Hospital Development Center(SHDC2020CR1044B)

摘要

人工耳蜗植入术是治疗重度及极重度感音神经性聋的儿童和成人患者的主要手段。电极在耳蜗内的位置是影响术后听力言语康复效果的重要因素之一,术后残余听力的保存与电极植入过程中对内耳结构的损伤程度密切相关,适当的植入深度和理想的电极位置对于良好的频率识别至关重要。植入后的影像学检查包括X线片和计算机断层扫描术(computed tomography,CT)。相比X线片,CT具有三维成像的优势。通过植入术后的CT影像学检查和评估,能够明确电极的完整程度,有助于确保手术的安全性和辅助术后调机或故障分析。基于CT影像学的三维重建方法让电极位置的评估更加直观和准确,有助于判断植入过程对于内耳精细结构损伤的程度,分析对听觉、言语预后的影响。人工耳蜗植入后的CT影像学评估在推动电极设计、改进柔手术技巧、推广机器人或手术导航等新手段的应用等方面功不可没,越来越受到有关研究者的关注。该文就人工耳蜗植入术后CT影像学评估的临床应用价值和技术进展等进行述评。

本文引用格式

顾文汐 , 贾欢 , 吴皓 . 人工耳蜗植入术后CT影像学评估的临床价值及进展[J]. 上海交通大学学报(医学版), 2023 , 43(12) : 1463 -1469 . DOI: 10.3969/j.issn.1674-8115.2023.12.001

Abstract

Cochlear implantation has been a standard rehabilitation for children and adult patients with severe to profound sensorineural deafness. The intracochlear localization of the electrode array is one of the key factors related to the postoperative auditory and speech outcomes. Preservation of the residual hearing is related to the trauma to the inner ear structures caused in the insertion process. Optimal insertion depth and positioning of the electrode array is important for frequency discrimination. The post-operative position of the electrode array is evaluated by using plain X ray or computed tomography (CT). Compared to the plain X ray, CT produces three-dimensional (3D) imaging. With the application of post-operative CT evaluation, the integrity of the electrode array can be verified for surgical safety and improving programming accuracy. Different 3D reconstruction techniques and methods based on the post-operative CT imaging have been proposed to facilitate the precise recognition of position of each electrode, thus helpful to evaluate the possible insertion trauma to inner ear structures and the potential effect on auditory and speech outcomes. The post-operative CT evaluation has helped the electrode array design, brought progress to the soft surgery procedure and promoted new technologies such as robotic surgery and navigation. Therefore, it is getting more and more attention. This article reviews the clinical application values and the progress of techniques in post-operative CT evaluation of cochlear implantation.

参考文献

1 O'CONNELL B P, HUNTER J B, WANNA G B. The importance of electrode location in cochlear implantation[J]. Laryngoscope Investig Otolaryngol, 2016, 1(6): 169-174.
2 XU J, XU S, COHEN L, et al. Cochlear view: postoperative radiography for cochlear implantation[J]. Am J Otolaryngol, 2000, 21(1): 49-56.
3 VERBIST B M, FRIJNS J H M, GELEIJNS J, et al. Multisection CT as a valuable tool in the postoperative assessment of cochlear implant patients[J]. AJNR Am J Neuroradiol, 2005, 26(2): 424-429.
4 RUIVO J, MERMUYS K, BACHER K, et al. Cone beam computed tomography, a low-dose imaging technique in the postoperative assessment of cochlear implantation[J]. Otol Neurotol, 2009, 30(3): 299-303.
5 JIA H, TORRES R, NGUYEN Y, et al. Intraoperative conebeam CT for assessment of intracochlear positioning of electrode arrays in adult recipients of cochlear implants[J]. AJNR Am J Neuroradiol, 2018, 39(4): 768-774.
6 LOUBELE M, JACOBS R, MAES F, et al. Image quality vs radiation dose of four cone beam computed tomography scanners[J]. Dentomaxillofac Radiol, 2008, 37(6): 309-318.
7 GU W X, DAOUDI H, LAHLOU G, et al. Auditory outcomes after scala vestibuli array insertion are similar to those after scala tympani insertion 1 year after cochlear implantation[J]. Eur Arch Otorhinolaryngol, 2023. DOI: 10.1007/s00405-023-08107-5.
8 DHANASINGH A, JOLLY C. Review on cochlear implant electrode array tip fold-over and scalar deviation[J]. J Otol, 2019, 14(3): 94-100.
9 PAPSIN B C. Cochlear implantation in children with anomalous cochleovestibular anatomy[J]. Laryngoscope, 2005, 115(S106): 1-26.
10 BIRMAN C S, BREW J A, GIBSON W P R, et al. CHARGE syndrome and Cochlear implantation: difficulties and outcomes in the paediatric population[J]. Int J Pediatr Otorhinolaryngol, 2015, 79(4): 487-492.
11 TODT I, RADEMACHER G, ERNST A. Identification and revision of a displaced cochlear implant electrode in the internal auditory canal[J]. Cochlear Implants Int, 2013, 14(4): 236-239.
12 PAU H, PARKER A, SANLI H, et al. Displacement of electrodes of a cochlear implant into the vestibular system: intra- and postoperative electrophysiological analyses[J]. Acta Otolaryngol, 2005, 125(10): 1116-1118.
13 G?ZEN E D, TEVETO?LU F, YENER H M, et al. Extra-cochlear insertion in cochlear implantation: a potentially disastrous condition[J]. J Int Adv Otol, 2019, 15(3): 358-363.
14 ISHIYAMA A, RISI F, BOYD P. Potential insertion complications with cochlear implant electrodes[J]. Cochlear Implants Int, 2020, 21(4): 206-219.
15 VASHISHTH A, FULCHERI A, GUIDA M, et al. Incomplete and false tract insertions in cochlear implantation: retrospective review of surgical and auditory outcomes[J]. Eur Arch Otorhinolaryngol, 2018, 275(5): 1059-1068.
16 DHANASINGH A, JOLLY C. An overview of cochlear implant electrode array designs[J]. Hear Res, 2017, 356: 93-103.
17 HILLY O, SMITH L, HWANG E, et al. Depth of cochlear implant array within the cochlea and performance outcome[J]. Ann Otol Rhinol Laryngol, 2016, 125(11): 886-892.
18 WANNA G B, NOBLE J H, GIFFORD R H, et al. Impact of intrascalar electrode location, electrode type, and angular insertion depth on residual hearing in cochlear implant patients: preliminary results[J]. Otol Neurotol, 2015, 36(8): 1343-1348.
19 CARLSON M L, DRISCOLL C L W, GIFFORD R H, et al. Implications of minimizing trauma during conventional cochlear implantation[J]. Otol Neurotol, 2011, 32(6): 962-968.
20 IBRAHIM H N, HELBIG S, BOSSARD D, et al. Surgical trauma after sequential insertion of intracochlear catheters and electrode arrays (a histologic study)[J]. Otol Neurotol, 2011, 32(9): 1448-1454.
21 DA?KIRAN M, TARKAN ?, SüRMELIO?LU ?, et al. Management of complications in 1 452 pediatric and adult cochlear implantations[J]. Turk Arch Otorhinolaryngol, 2020, 58(1): 16-23.
22 DIETZ A, WENNSTR?M M, LEHTIM?KI A, et al. Electrode migration after cochlear implant surgery: more common than expected?[J]. Eur Arch Otorhinolaryngol, 2016, 273(6): 1411-1418.
23 DEES G, SMITS J J, JANSSEN A M L, et al. A mid-scala cochlear implant electrode design achieves a stable post-surgical position in the cochlea of patients over time: a prospective observational study[J]. Otol Neurotol, 2018, 39(4): e231-e239.
24 TAN H Y, YAO J J, LI Y, et al. Radiological and audiological outcomes of the LISTENT LCI-20PI cochlear implant device[J]. Otol Neurotol, 2021, 42(4): 524-531.
25 DAOUDI H, LAHLOU G, TORRES R, et al. Robot-assisted cochlear implant electrode array insertion in adults: a comparative study with manual insertion[J]. Otol Neurotol, 2021, 42(4): e438-e444.
26 JIA H, PAN J X, GU W X, et al. Robot-assisted electrode array insertion becomes available in pediatric cochlear implant recipients: first report and an intra-individual study[J]. Front Surg, 2021, 8: 695728.
27 ALJAZEERI I, HAMED N, ABDELSAMAD Y, et al. Anatomy-based frequency allocation in cochlear implantation: the importance of cochlear coverage[J]. Laryngoscope, 2022, 132(11): 2224-2231.
28 CANFAROTTA M W, DILLON M T, BUSS E, et al. Frequency-to-place mismatch: characterizing variability and the influence on speech perception outcomes in cochlear implant recipients[J]. Ear Hear, 2020, 41(5): 1349-1361.
29 DI MARO F, CARNER M, SACCHETTO A, et al. Frequency reallocation based on cochlear place frequencies in cochlear implants: a pilot study[J]. Eur Arch Otorhinolaryngol, 2022, 279(10): 4719-4725.
30 TORRES R, DROUILLARD M, DE SETA D, et al. Cochlear implant insertion axis into the basal turn: a critical factor in electrode array translocation[J]. Otol Neurotol, 2018, 39(2): 168-176.
31 DE SETA D, MANCINI P, RUSSO F Y, et al. 3D curved multiplanar cone beam CT reconstruction for intracochlear position assessment of straight electrodes array. A temporal bone and clinical study[J]. Acta Otorhinolaryngol Ital, 2016, 36(6): 499-505.
32 SIPARI S, ISO-MUSTAJ?RVI M, L?PP?NEN H, et al. The insertion results of a mid-scala electrode assessed by MRI and CBCT image fusion[J]. Otol Neurotol, 2018, 39(10): e1019-e1025.
33 DRAGOVIC A S, STRINGER A K, CAMPBELL L, et al. Co-registration of cone beam CT and preoperative MRI for improved accuracy of electrode localization following cochlear implantation[J]. Cochlear Implants Int, 2018, 19(3): 147-152.
34 贾欢, 谭皓月, 张治华, 等. 精准人工耳蜗电极鼓阶植入: 技术报告及6年回顾[C]//中华医学会. 中华医学会第十九次全国耳鼻咽喉头颈外科学学术会议论文汇编. 北京: 中华医学会, 2022: 612.
34 JIA H, TAN H Y, ZHANG Z H, et al. Precise cochlear electrode array insertion into the scala tympani: technical report and 6-year review[C]//Chinese Medical Association. Thesis compilation of The 19th National Academic Meeting of Chinese Society of Otolaryngology-Head and Neck Surgery. Beijing: Chinese Medical Association, 2022: 612.
35 CAKIR A, LABADIE R F, ZUNIGA M G, et al. Evaluation of rigid cochlear models for measuring cochlear implant electrode position[J]. Otol Neurotol, 2016, 37(10): 1560-1564.
36 DEMARCY T, VANDERSTEEN C, GUEVARA N, et al. Automated analysis of human cochlea shape variability from segmented μCT images[J]. Comput Med Imaging Graph, 2017, 59: 1-12.
37 TORRES R, TINEVEZ J Y, DAOUDI H, et al. Best fit 3D basilar membrane reconstruction to routinely assess the scalar position of the electrode array after cochlear implantation[J]. J Clin Med, 2022, 11(8): 2075.
文章导航

/