收稿日期: 2023-09-06
录用日期: 2024-04-18
网络出版日期: 2024-01-28
基金资助
上海市自然科学基金(21ZR1448700);上海交通大学医学院“双百人”项目(20191831)
Research progress of m6A methylation modification in regulating tumor immunity
Received date: 2023-09-06
Accepted date: 2024-04-18
Online published: 2024-01-28
Supported by
Shanghai Natural Science Foundation(21ZR1448700);"Two-hundred Talents" Program of Shanghai Jiao Tong University School of Medicine(20191831)
N6-甲基腺苷(N6-methyladenosine,m6A)是一种调控真核细胞基因表达最常见的修饰方式,影响RNA的剪接、降解、稳定性以及蛋白翻译等过程。研究表明m6A甲基化修饰与肿瘤发生发展密切相关,在肿瘤免疫应答的相关过程中也发挥着重要的调控作用。m6A修饰参与调节免疫细胞的分化、成熟过程以及相关的抗肿瘤免疫反应。在肿瘤微环境中,m6A修饰也可影响免疫细胞的募集、活化和极化等,从而促进或抑制肿瘤细胞的增殖与转移,起到重塑肿瘤免疫微环境的重要作用。近年来肿瘤的免疫治疗逐渐应用于临床,如免疫检查点抑制剂治疗、过继性细胞免疫治疗等,都取得了较好的临床效果。通过靶向m6A修饰来干预机体免疫系统,如通过小分子抑制剂靶向失调的m6A调控因子、诱导免疫细胞重编程等,可提高抗肿瘤免疫反应,加强免疫细胞对肿瘤细胞的识别和杀伤能力。m6A修饰是肿瘤免疫治疗的一个新方向,具有潜在的临床应用价值。该文围绕m6A甲基化修饰对免疫细胞及肿瘤免疫应答的调控作用进行综述,探讨其免疫治疗的新思路。
周海霞 , 张靖 . m6A甲基化修饰调控肿瘤免疫的研究进展[J]. 上海交通大学学报(医学版), 2024 , 44(1) : 137 -144 . DOI: 10.3969/j.issn.1674-8115.2024.01.016
N6-methyladenosine (m6A) is the most prevalent modification that regulates gene expression in eukaryotes. It regulates splicing, degradation, stability, and translation of RNA. Numerous studies have demonstrated the close association between m6A methylation and tumor development, highlighting its crucial role in regulating tumor immune response. The m6A modification actively participates in governing immune cell differentiation and maturation as well as modulating anti-tumor immune responses. Within the tumor microenvironment, m6A modification can also impact the recruitment, activation, and polarization of immune cells, thereby either promoting or inhibiting tumor cell proliferation and metastasis. Consequently, it plays a pivotal role in reshaping the tumor immune microenvironment. In recent years, immunotherapy for tumors has been increasingly applied to clinical practice with notable success achieved through approaches such as immune checkpoint inhibitor therapy and adoptive cell immunotherapy. Targeting m6A modifications to interfere with the immune system, such as targeting dysregulated m6A regulators through small molecule inhibitors and inducing immune cell reprogramming, can improve anti-tumor immune response and strengthen immune cells′ ability to recognize and kill tumor cells. The m6A modification represents a novel avenue for potential clinical application within tumor immunotherapy. This review provides a comprehensive summary of the regulatory impact of m6A methylation modification on immune cells in the context of cancer, while also delving into novel targets for tumor immunotherapy.
Key words: m6A methylation; tumor immunity; immunotherapy
1 | YI Y C, CHEN X Y, ZHANG J, et al. Novel insights into the interplay between m6A modification and noncoding RNAs in cancer[J]. Mol Cancer, 2020, 19(1): 121. |
2 | SHULMAN Z, STERN-GINOSSAR N. The RNA modification N6-methyladenosine as a novel regulator of the immune system[J]. Nat Immunol, 2020, 21(5): 501-512. |
3 | WANG X, LU Z K, GOMEZ A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481): 117-120. |
4 | LI A, CHEN Y S, PING X L, et al. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation[J]. Cell Res, 2017, 27(3): 444-447. |
5 | ROUNDTREE I A, EVANS M E, PAN T, et al. Dynamic RNA modifications in gene expression regulation[J]. Cell, 2017, 169(7): 1187-1200. |
6 | DENG L J, DENG W Q, FAN S R, et al. m6A modification: recent advances, anticancer targeted drug discovery and beyond[J]. Mol Cancer, 2022, 21(1): 52. |
7 | JIA G F, FU Y, ZHAO X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887. |
8 | ZHENG G Q, DAHL J A, NIU Y M, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1): 18-29. |
9 | MORANTE-PALACIOS O, FONDELLI F, BALLESTAR E, et al. Tolerogenic dendritic cells in autoimmunity and inflammatory diseases[J]. Trends Immunol, 2021, 42(1): 59-75. |
10 | DIAMOND M S, LIN J H, VONDERHEIDE R H. Site-dependent immune escape due to impaired dendritic cell cross-priming[J]. Cancer Immunol Res, 2021, 9(8): 877-890. |
11 | WANG H M, HU X, HUANG M Y, et al. Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation[J]. Nat Commun, 2019, 10(1): 1898. |
12 | LIU J, ZHANG X M, CHEN K, et al. CCR7 chemokine receptor-inducible lnc-Dpf3 restrains dendritic cell migration by inhibiting HIF-1α-mediated glycolysis[J]. Immunity, 2019, 50(3): 600-615.e15. |
13 | HAN D L, LIU J, CHEN C Y, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells[J]. Nature, 2019, 566(7743): 270-274. |
14 | WU S Y, FU T, JIANG Y Z, et al. Natural killer cells in cancer biology and therapy[J]. Mol Cancer, 2020, 19(1): 120. |
15 | SONG H, SONG J X, CHENG M, et al. METTL3-mediated m6A RNA methylation promotes the anti-tumour immunity of natural killer cells[J]. Nat Commun, 2021, 12(1): 5522. |
16 | MA S B, YAN J Z, BARR T, et al. The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity[J]. J Exp Med, 2021, 218(8): e20210279. |
17 | LEWIS C E, POLLARD J W. Distinct role of macrophages in different tumor microenvironments[J]. Cancer Res, 2006, 66(2): 605-612. |
18 | CAUX C, RAMOS R N, PRENDERGAST G C, et al. A milestone review on how macrophages affect tumor growth[J]. Cancer Res, 2016, 76(22): 6439-6442. |
19 | PITTET M J, MICHIELIN O, MIGLIORINI D. Clinical relevance of tumour-associated macrophages[J]. Nat Rev Clin Oncol, 2022, 19(6): 402-421. |
20 | LIU Y H, LIU Z J, TANG H, et al. The N 6-methyladenosine (m6A)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA[J]. Am J Physiol Cell Physiol, 2019, 317(4): C762-C775. |
21 | YIN H L, ZHANG X, YANG P Y, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming[J]. Nat Commun, 2021, 12(1): 1394. |
22 | MA S B, SUN B F, DUAN S Q, et al. YTHDF2 orchestrates tumor-associated macrophage reprogramming and controls antitumor immunity through CD8+ T cells[J]. Nat Immunol, 2023, 24(2): 255-266. |
23 | OLINGY C E, DINH H Q, HEDRICK C C. Monocyte heterogeneity and functions in cancer[J]. J Leukoc Biol, 2019, 106(2): 309-322. |
24 | XIE J Y, HUANG Z J, JIANG P, et al. Elevated N6-methyladenosine RNA levels in peripheral blood immune cells: a novel predictive biomarker and therapeutic target for colorectal cancer[J]. Front Immunol, 2021, 12: 760747. |
25 | ZHANG X N, LI X, JIA H T, et al. The m6A methyltransferase METTL3 modifies PGC-1α mRNA promoting mitochondrial dysfunction and oxLDL-induced inflammation in monocytes[J]. J Biol Chem, 2021, 297(3): 101058. |
26 | JAILLON S, PONZETTA A, MITRI D D, et al. Neutrophil diversity and plasticity in tumour progression and therapy[J]. Nat Rev Cancer, 2020, 20(9): 485-503. |
27 | OU B C, LIU Y, YANG X W, et al. C5aR1-positive neutrophils promote breast cancer glycolysis through WTAP-dependent m6A methylation of ENO1[J]. Cell Death Dis, 2021, 12(8): 737. |
28 | OU B C, LIU Y, GAO Z X, et al. Senescent neutrophils-derived exosomal piRNA-17560 promotes chemoresistance and EMT of breast cancer via FTO-mediated m6A demethylation[J]. Cell Death Dis, 2022, 13(10): 905. |
29 | VEGLIA F, SANSEVIERO E, GABRILOVICH D I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity[J]. Nat Rev Immunol, 2021, 21(8): 485-498. |
30 | CHEN H R, PAN Y S, ZHOU Q M, et al. METTL3 inhibits antitumor immunity by targeting m6A-BHLHE41-CXCL1/CXCR2 axis to promote colorectal cancer[J]. Gastroenterology, 2022, 163(4): 891-907. |
31 | WANG L N, ZHU L F, LIANG C, et al. Targeting N6-methyladenosine reader YTHDF1 with siRNA boosts antitumor immunity in NASH-HCC by inhibiting EZH2-IL-6 axis[J]. J Hepatol, 2023, 79(5): 1185-1200. |
32 | SILVA-SANTOS B, MENSURADO S, COFFELT S B. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer[J]. Nat Rev Cancer, 2019, 19(7): 392-404. |
33 | DING C B, XU H, YU Z B, et al. RNA m6A demethylase ALKBH5 regulates the development of γδ T cells[J]. Proc Natl Acad Sci U S A, 2022, 119(33): e2203318119. |
34 | XIAO Z Q, WANG S S, TIAN Y X, et al. METTL3-mediated m6A methylation orchestrates mRNA stability and dsRNA contents to equilibrate γδ T1 and γδ T17 cells[J]. Cell Rep, 2023, 42(7): 112684. |
35 | LICHTERMAN J N, REDDY S M. Mast cells: a new frontier for cancer immunotherapy[J]. Cells, 2021, 10(6): 1270. |
36 | GUO W, TAN F W, HUAI Q L, et al. Comprehensive analysis of PD-L1 expression, immune infiltrates, and m6A RNA methylation regulators in esophageal squamous cell carcinoma[J]. Front Immunol, 2021, 12: 669750. |
37 | XU Z Y, CHEN Q L, SHU L L, et al. Expression profiles of m6A RNA methylation regulators, PD-L1 and immune infiltrates in gastric cancer[J]. Front Oncol, 2022, 12: 970367. |
38 | LEONI C, BATACLAN M, ITO-KUREHA T, et al. The mRNA methyltransferase Mettl3 modulates cytokine mRNA stability and limits functional responses in mast cells[J]. Nat Commun, 2023, 14(1): 3862. |
39 | WALSH S R, SIMOVIC B, CHEN L, et al. Endogenous T cells prevent tumor immune escape following adoptive T cell therapy[J]. J Clin Invest, 2019, 129(12): 5400-5410. |
40 | SI J W, SHI X J, SUN S H, et al. Hematopoietic progenitor kinase1 (HPK1) mediates T cell dysfunction and is a druggable target for T cell-based immunotherapies[J]. Cancer Cell, 2020, 38(4): 551-566.e11. |
41 | BORST J, AHRENDS T, B?BA?A N, et al. CD4+ T cell help in cancer immunology and immunotherapy[J]. Nat Rev Immunol, 2018, 18(10): 635-647. |
42 | LI H B, TONG J Y, ZHU S, et al. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways[J]. Nature, 2017, 548(7667): 338-342. |
43 | ZHOU J, ZHANG X L, HU J J, et al. m6A demethylase ALKBH5 controls CD4+ T cell pathogenicity and promotes autoimmunity[J]. Sci Adv, 2021, 7(25): eabg0470. |
44 | LU T X, ZHENG Z, ZHANG L D, et al. A new model of spontaneous colitis in mice induced by deletion of an RNA m6A methyltransferase component METTL14 in T cells[J]. Cell Mol Gastroenterol Hepatol, 2020, 10(4): 747-761. |
45 | TONG J Y, CAO G C, ZHANG T, et al. m6A mRNA methylation sustains treg suppressive functions[J]. Cell Res, 2018, 28(2): 253-256. |
46 | DONG L H, CHEN C Y, ZHANG Y W, et al. The loss of RNA N6-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8+ Tcell dysfunction and tumor growth[J]. Cancer Cell, 2021, 39(7): 945-957.e10. |
47 | TSUCHIYA K, YOSHIMURA K, INOUE Y, et al. YTHDF1 and YTHDF2 are associated with better patient survival and an inflamed tumor-immune microenvironment in non-small-cell lung cancer[J]. Oncoimmunology, 2021, 10(1): 1962656. |
48 | LIU Z C, WANG T T, SHE Y L, et al. N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer[J]. Mol Cancer, 2021, 20(1): 105. |
49 | LIU Y, LIANG G H, XU H J, et al. Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance[J]. Cell Metab, 2021, 33(6): 1221-1233.e11. |
50 | LAUMONT C M, NELSON B H. B cells in the tumor microenvironment: multi-faceted organizers, regulators, and effectors of anti-tumor immunity[J]. Cancer Cell, 2023, 41(3): 466-489. |
51 | ZHENG Z, ZHANG L D, CUI X L, et al. Control of early B cell development by the RNA N6-methyladenosine methylation[J]. Cell Rep, 2020, 31(13): 107819. |
52 | HUANG H J, ZHANG G P, RUAN G X, et al. Mettl14-mediated m6A modification is essential for germinal center B cell response[J]. J Immunol, 2022, 208(8): 1924-1936. |
53 | XU A S, ZHANG J S, ZUO L P, et al. FTO promotes multiple myeloma progression by posttranscriptional activation of HSF1 in an m6A-YTHDF2-dependent manner[J]. Mol Ther, 2022, 30(3): 1104-1118. |
54 | WANG L L, HUI H, AGRAWAL K, et al. m6 A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy[J]. EMBO J, 2020, 39(20): e104514. |
55 | BAO Y, ZHAI J N, CHEN H R, et al. Targeting m6A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer[J]. Gut, 2023, 72(8): 1497-1509. |
56 | HUANG Y, SU R, SHENG Y, et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia[J]. Cancer Cell, 2019, 35(4): 677-691.e10. |
57 | YANKOVA E, BLACKABY W, ALBERTELLA M, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia[J]. Nature, 2021, 593(7860): 597-601. |
58 | ZHANG B, WU Q, LI B, et al. m6A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer[J]. Mol Cancer, 2020, 19(1): 53. |
/
〈 |
|
〉 |