上海交通大学学报(医学版) ›› 2024, Vol. 44 ›› Issue (1): 137-144.doi: 10.3969/j.issn.1674-8115.2024.01.016
• 综述 • 上一篇
收稿日期:
2023-09-06
接受日期:
2024-04-18
出版日期:
2024-01-28
发布日期:
2024-02-28
通讯作者:
张靖
E-mail:zhaixia000@163.com;jing5522724@163.com
作者简介:
周海霞(2000—),女,硕士生;电子信箱:zhaixia000@163.com。
基金资助:
Received:
2023-09-06
Accepted:
2024-04-18
Online:
2024-01-28
Published:
2024-02-28
Contact:
ZHANG Jing
E-mail:zhaixia000@163.com;jing5522724@163.com
Supported by:
摘要:
N6-甲基腺苷(N6-methyladenosine,m6A)是一种调控真核细胞基因表达最常见的修饰方式,影响RNA的剪接、降解、稳定性以及蛋白翻译等过程。研究表明m6A甲基化修饰与肿瘤发生发展密切相关,在肿瘤免疫应答的相关过程中也发挥着重要的调控作用。m6A修饰参与调节免疫细胞的分化、成熟过程以及相关的抗肿瘤免疫反应。在肿瘤微环境中,m6A修饰也可影响免疫细胞的募集、活化和极化等,从而促进或抑制肿瘤细胞的增殖与转移,起到重塑肿瘤免疫微环境的重要作用。近年来肿瘤的免疫治疗逐渐应用于临床,如免疫检查点抑制剂治疗、过继性细胞免疫治疗等,都取得了较好的临床效果。通过靶向m6A修饰来干预机体免疫系统,如通过小分子抑制剂靶向失调的m6A调控因子、诱导免疫细胞重编程等,可提高抗肿瘤免疫反应,加强免疫细胞对肿瘤细胞的识别和杀伤能力。m6A修饰是肿瘤免疫治疗的一个新方向,具有潜在的临床应用价值。该文围绕m6A甲基化修饰对免疫细胞及肿瘤免疫应答的调控作用进行综述,探讨其免疫治疗的新思路。
中图分类号:
周海霞, 张靖. m6A甲基化修饰调控肿瘤免疫的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(1): 137-144.
ZHOU Haixia, ZHANG Jing. Research progress of m6A methylation modification in regulating tumor immunity[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(1): 137-144.
Immune cell | m6A regulator | Type | Related factor | Function | Reference |
---|---|---|---|---|---|
DC | METTL3 | Writer | CD40, CD80 and Tirap | Positively correlates with DC maturation and function in promoting T-cell activation | [ |
YTHDF1 | Reader | Lysosomal proteases | Negatively correlates with cross-presentation of engulfed tumour neoantigens | [ | |
YTHDF2 | Reader | lnc-Dpf3 | Positively correlates with DC migration | [ | |
NK | METTL3 | Writer | SHP-2 | Positively correlates antitumor immunity of NK cells | [ |
YTHDF2 | Reader | Tardb | Positively correlates with NK cell antitumor activity as well as NK cell homeostasis and maturation | [ | |
TAM | METTL3 | Writer | STAT1, STAT3 | Positively correlates with M1 macrophage polarization | [ |
YTHDF2 | Reader | STAT1 | Negatively correlates with macrophage reprogramming and antitumor immunity | [ | |
Monocyte | METTL3 | Writer | PGC-1α | Positively correlates with monocyte differentiation into different types of macrophages | [ |
Neutrophil | WTAP | Writer | ENO1 | Positively correlates with tumor glycolysis mediated by C5aR1-positive neutrophils | [ |
FTO | Eraser | ZEB1 | Positively correlates with senescent neutrophils-mediated chemoresistance in breast cancer | [ | |
MDSC | METTL3 | Writer | BHLHE41 | Positively correlates with MDSC migration | [ |
YTHDF1 | Reader | EZH2 | Positively correlates with MDSC recruitment and activation | [ | |
γδ T cell | METTL3 | Writer | STAT1 | Positively correlates with equilibrate γδ T1 and γδ T17 cells | [ |
ALKBH5 | Eraser | Jagged1/Notch2 | Negatively correlates with proliferation and differentiation of γδ T cell precursors | [ | |
Mast cell | METTL3 | Writer | IL-13 | Negatively correlates with inflammatory responses of mast cells | [ |
表1 m6A修饰对固有免疫细胞的调控作用
Tab 1 Role of m6A modifications in innate immune cells
Immune cell | m6A regulator | Type | Related factor | Function | Reference |
---|---|---|---|---|---|
DC | METTL3 | Writer | CD40, CD80 and Tirap | Positively correlates with DC maturation and function in promoting T-cell activation | [ |
YTHDF1 | Reader | Lysosomal proteases | Negatively correlates with cross-presentation of engulfed tumour neoantigens | [ | |
YTHDF2 | Reader | lnc-Dpf3 | Positively correlates with DC migration | [ | |
NK | METTL3 | Writer | SHP-2 | Positively correlates antitumor immunity of NK cells | [ |
YTHDF2 | Reader | Tardb | Positively correlates with NK cell antitumor activity as well as NK cell homeostasis and maturation | [ | |
TAM | METTL3 | Writer | STAT1, STAT3 | Positively correlates with M1 macrophage polarization | [ |
YTHDF2 | Reader | STAT1 | Negatively correlates with macrophage reprogramming and antitumor immunity | [ | |
Monocyte | METTL3 | Writer | PGC-1α | Positively correlates with monocyte differentiation into different types of macrophages | [ |
Neutrophil | WTAP | Writer | ENO1 | Positively correlates with tumor glycolysis mediated by C5aR1-positive neutrophils | [ |
FTO | Eraser | ZEB1 | Positively correlates with senescent neutrophils-mediated chemoresistance in breast cancer | [ | |
MDSC | METTL3 | Writer | BHLHE41 | Positively correlates with MDSC migration | [ |
YTHDF1 | Reader | EZH2 | Positively correlates with MDSC recruitment and activation | [ | |
γδ T cell | METTL3 | Writer | STAT1 | Positively correlates with equilibrate γδ T1 and γδ T17 cells | [ |
ALKBH5 | Eraser | Jagged1/Notch2 | Negatively correlates with proliferation and differentiation of γδ T cell precursors | [ | |
Mast cell | METTL3 | Writer | IL-13 | Negatively correlates with inflammatory responses of mast cells | [ |
Immune cell | m6A regulator | Type | Related factor | Function | Reference |
---|---|---|---|---|---|
CD4+ T cell | METTL3 | Writer | SOCS | Positively correlates with proliferation and differentiation of T cells | [ |
ALKBH5 | Eraser | IFN-γ, CXCL2 | Positively correlates with Th1 cell activation | [ | |
Treg cell | METTL3 | Writer | SOCS | Positively correlates with sustaining Treg suppressive functions | [ |
METTL14 | Writer | RORγt | Positively correlates with Tregs differentiation | [ | |
CD8+ T cell | METTL3 | Writer | circIGF2BP3 | Negatively correlates with CD8+T cell responses and facilitates tumor immune | [ |
METTL14 | Writer | Ebi3 | Negatively correlates with dysfunctional CD8+T cell levels in patients with colorectal cancer | [ | |
YTHDF1/2 | Reader | unkown | Positively correlates with tumor-infiltrating lymphocytes, including CD8+ T cells | [ | |
FTO | Eraser | c-Jun, JunB, and C/EBPβ | Positively correlates with glycolytic metabolism of tumor cells; negatively correlates with CD8+T cell responses | [ | |
B cell | METTL14 | Writer | Lax1, Tipe2 | Positively correlates with B cell maturation | [ |
FTO | Eraser | HSF1 | Positively correlates with tumor-promoting and pro-metastatic in multiple myeloma | [ |
表2 m6A修饰对适应性免疫细胞的调控作用
Tab 2 Role of m6A modifications in adaptive immune cells
Immune cell | m6A regulator | Type | Related factor | Function | Reference |
---|---|---|---|---|---|
CD4+ T cell | METTL3 | Writer | SOCS | Positively correlates with proliferation and differentiation of T cells | [ |
ALKBH5 | Eraser | IFN-γ, CXCL2 | Positively correlates with Th1 cell activation | [ | |
Treg cell | METTL3 | Writer | SOCS | Positively correlates with sustaining Treg suppressive functions | [ |
METTL14 | Writer | RORγt | Positively correlates with Tregs differentiation | [ | |
CD8+ T cell | METTL3 | Writer | circIGF2BP3 | Negatively correlates with CD8+T cell responses and facilitates tumor immune | [ |
METTL14 | Writer | Ebi3 | Negatively correlates with dysfunctional CD8+T cell levels in patients with colorectal cancer | [ | |
YTHDF1/2 | Reader | unkown | Positively correlates with tumor-infiltrating lymphocytes, including CD8+ T cells | [ | |
FTO | Eraser | c-Jun, JunB, and C/EBPβ | Positively correlates with glycolytic metabolism of tumor cells; negatively correlates with CD8+T cell responses | [ | |
B cell | METTL14 | Writer | Lax1, Tipe2 | Positively correlates with B cell maturation | [ |
FTO | Eraser | HSF1 | Positively correlates with tumor-promoting and pro-metastatic in multiple myeloma | [ |
1 | YI Y C, CHEN X Y, ZHANG J, et al. Novel insights into the interplay between m6A modification and noncoding RNAs in cancer[J]. Mol Cancer, 2020, 19(1): 121. |
2 | SHULMAN Z, STERN-GINOSSAR N. The RNA modification N6-methyladenosine as a novel regulator of the immune system[J]. Nat Immunol, 2020, 21(5): 501-512. |
3 | WANG X, LU Z K, GOMEZ A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481): 117-120. |
4 | LI A, CHEN Y S, PING X L, et al. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation[J]. Cell Res, 2017, 27(3): 444-447. |
5 | ROUNDTREE I A, EVANS M E, PAN T, et al. Dynamic RNA modifications in gene expression regulation[J]. Cell, 2017, 169(7): 1187-1200. |
6 | DENG L J, DENG W Q, FAN S R, et al. m6A modification: recent advances, anticancer targeted drug discovery and beyond[J]. Mol Cancer, 2022, 21(1): 52. |
7 | JIA G F, FU Y, ZHAO X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887. |
8 | ZHENG G Q, DAHL J A, NIU Y M, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1): 18-29. |
9 | MORANTE-PALACIOS O, FONDELLI F, BALLESTAR E, et al. Tolerogenic dendritic cells in autoimmunity and inflammatory diseases[J]. Trends Immunol, 2021, 42(1): 59-75. |
10 | DIAMOND M S, LIN J H, VONDERHEIDE R H. Site-dependent immune escape due to impaired dendritic cell cross-priming[J]. Cancer Immunol Res, 2021, 9(8): 877-890. |
11 | WANG H M, HU X, HUANG M Y, et al. Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation[J]. Nat Commun, 2019, 10(1): 1898. |
12 | LIU J, ZHANG X M, CHEN K, et al. CCR7 chemokine receptor-inducible lnc-Dpf3 restrains dendritic cell migration by inhibiting HIF-1α-mediated glycolysis[J]. Immunity, 2019, 50(3): 600-615.e15. |
13 | HAN D L, LIU J, CHEN C Y, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells[J]. Nature, 2019, 566(7743): 270-274. |
14 | WU S Y, FU T, JIANG Y Z, et al. Natural killer cells in cancer biology and therapy[J]. Mol Cancer, 2020, 19(1): 120. |
15 | SONG H, SONG J X, CHENG M, et al. METTL3-mediated m6A RNA methylation promotes the anti-tumour immunity of natural killer cells[J]. Nat Commun, 2021, 12(1): 5522. |
16 | MA S B, YAN J Z, BARR T, et al. The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity[J]. J Exp Med, 2021, 218(8): e20210279. |
17 | LEWIS C E, POLLARD J W. Distinct role of macrophages in different tumor microenvironments[J]. Cancer Res, 2006, 66(2): 605-612. |
18 | CAUX C, RAMOS R N, PRENDERGAST G C, et al. A milestone review on how macrophages affect tumor growth[J]. Cancer Res, 2016, 76(22): 6439-6442. |
19 | PITTET M J, MICHIELIN O, MIGLIORINI D. Clinical relevance of tumour-associated macrophages[J]. Nat Rev Clin Oncol, 2022, 19(6): 402-421. |
20 | LIU Y H, LIU Z J, TANG H, et al. The N 6-methyladenosine (m6A)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA[J]. Am J Physiol Cell Physiol, 2019, 317(4): C762-C775. |
21 | YIN H L, ZHANG X, YANG P Y, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming[J]. Nat Commun, 2021, 12(1): 1394. |
22 | MA S B, SUN B F, DUAN S Q, et al. YTHDF2 orchestrates tumor-associated macrophage reprogramming and controls antitumor immunity through CD8+ T cells[J]. Nat Immunol, 2023, 24(2): 255-266. |
23 | OLINGY C E, DINH H Q, HEDRICK C C. Monocyte heterogeneity and functions in cancer[J]. J Leukoc Biol, 2019, 106(2): 309-322. |
24 | XIE J Y, HUANG Z J, JIANG P, et al. Elevated N6-methyladenosine RNA levels in peripheral blood immune cells: a novel predictive biomarker and therapeutic target for colorectal cancer[J]. Front Immunol, 2021, 12: 760747. |
25 | ZHANG X N, LI X, JIA H T, et al. The m6A methyltransferase METTL3 modifies PGC-1α mRNA promoting mitochondrial dysfunction and oxLDL-induced inflammation in monocytes[J]. J Biol Chem, 2021, 297(3): 101058. |
26 | JAILLON S, PONZETTA A, MITRI D D, et al. Neutrophil diversity and plasticity in tumour progression and therapy[J]. Nat Rev Cancer, 2020, 20(9): 485-503. |
27 | OU B C, LIU Y, YANG X W, et al. C5aR1-positive neutrophils promote breast cancer glycolysis through WTAP-dependent m6A methylation of ENO1[J]. Cell Death Dis, 2021, 12(8): 737. |
28 | OU B C, LIU Y, GAO Z X, et al. Senescent neutrophils-derived exosomal piRNA-17560 promotes chemoresistance and EMT of breast cancer via FTO-mediated m6A demethylation[J]. Cell Death Dis, 2022, 13(10): 905. |
29 | VEGLIA F, SANSEVIERO E, GABRILOVICH D I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity[J]. Nat Rev Immunol, 2021, 21(8): 485-498. |
30 | CHEN H R, PAN Y S, ZHOU Q M, et al. METTL3 inhibits antitumor immunity by targeting m6A-BHLHE41-CXCL1/CXCR2 axis to promote colorectal cancer[J]. Gastroenterology, 2022, 163(4): 891-907. |
31 | WANG L N, ZHU L F, LIANG C, et al. Targeting N6-methyladenosine reader YTHDF1 with siRNA boosts antitumor immunity in NASH-HCC by inhibiting EZH2-IL-6 axis[J]. J Hepatol, 2023, 79(5): 1185-1200. |
32 | SILVA-SANTOS B, MENSURADO S, COFFELT S B. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer[J]. Nat Rev Cancer, 2019, 19(7): 392-404. |
33 | DING C B, XU H, YU Z B, et al. RNA m6A demethylase ALKBH5 regulates the development of γδ T cells[J]. Proc Natl Acad Sci U S A, 2022, 119(33): e2203318119. |
34 | XIAO Z Q, WANG S S, TIAN Y X, et al. METTL3-mediated m6A methylation orchestrates mRNA stability and dsRNA contents to equilibrate γδ T1 and γδ T17 cells[J]. Cell Rep, 2023, 42(7): 112684. |
35 | LICHTERMAN J N, REDDY S M. Mast cells: a new frontier for cancer immunotherapy[J]. Cells, 2021, 10(6): 1270. |
36 | GUO W, TAN F W, HUAI Q L, et al. Comprehensive analysis of PD-L1 expression, immune infiltrates, and m6A RNA methylation regulators in esophageal squamous cell carcinoma[J]. Front Immunol, 2021, 12: 669750. |
37 | XU Z Y, CHEN Q L, SHU L L, et al. Expression profiles of m6A RNA methylation regulators, PD-L1 and immune infiltrates in gastric cancer[J]. Front Oncol, 2022, 12: 970367. |
38 | LEONI C, BATACLAN M, ITO-KUREHA T, et al. The mRNA methyltransferase Mettl3 modulates cytokine mRNA stability and limits functional responses in mast cells[J]. Nat Commun, 2023, 14(1): 3862. |
39 | WALSH S R, SIMOVIC B, CHEN L, et al. Endogenous T cells prevent tumor immune escape following adoptive T cell therapy[J]. J Clin Invest, 2019, 129(12): 5400-5410. |
40 | SI J W, SHI X J, SUN S H, et al. Hematopoietic progenitor kinase1 (HPK1) mediates T cell dysfunction and is a druggable target for T cell-based immunotherapies[J]. Cancer Cell, 2020, 38(4): 551-566.e11. |
41 | BORST J, AHRENDS T, BĄBAŁA N, et al. CD4+ T cell help in cancer immunology and immunotherapy[J]. Nat Rev Immunol, 2018, 18(10): 635-647. |
42 | LI H B, TONG J Y, ZHU S, et al. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways[J]. Nature, 2017, 548(7667): 338-342. |
43 | ZHOU J, ZHANG X L, HU J J, et al. m6A demethylase ALKBH5 controls CD4+ T cell pathogenicity and promotes autoimmunity[J]. Sci Adv, 2021, 7(25): eabg0470. |
44 | LU T X, ZHENG Z, ZHANG L D, et al. A new model of spontaneous colitis in mice induced by deletion of an RNA m6A methyltransferase component METTL14 in T cells[J]. Cell Mol Gastroenterol Hepatol, 2020, 10(4): 747-761. |
45 | TONG J Y, CAO G C, ZHANG T, et al. m6A mRNA methylation sustains treg suppressive functions[J]. Cell Res, 2018, 28(2): 253-256. |
46 | DONG L H, CHEN C Y, ZHANG Y W, et al. The loss of RNA N6-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8+ Tcell dysfunction and tumor growth[J]. Cancer Cell, 2021, 39(7): 945-957.e10. |
47 | TSUCHIYA K, YOSHIMURA K, INOUE Y, et al. YTHDF1 and YTHDF2 are associated with better patient survival and an inflamed tumor-immune microenvironment in non-small-cell lung cancer[J]. Oncoimmunology, 2021, 10(1): 1962656. |
48 | LIU Z C, WANG T T, SHE Y L, et al. N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer[J]. Mol Cancer, 2021, 20(1): 105. |
49 | LIU Y, LIANG G H, XU H J, et al. Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance[J]. Cell Metab, 2021, 33(6): 1221-1233.e11. |
50 | LAUMONT C M, NELSON B H. B cells in the tumor microenvironment: multi-faceted organizers, regulators, and effectors of anti-tumor immunity[J]. Cancer Cell, 2023, 41(3): 466-489. |
51 | ZHENG Z, ZHANG L D, CUI X L, et al. Control of early B cell development by the RNA N6-methyladenosine methylation[J]. Cell Rep, 2020, 31(13): 107819. |
52 | HUANG H J, ZHANG G P, RUAN G X, et al. Mettl14-mediated m6A modification is essential for germinal center B cell response[J]. J Immunol, 2022, 208(8): 1924-1936. |
53 | XU A S, ZHANG J S, ZUO L P, et al. FTO promotes multiple myeloma progression by posttranscriptional activation of HSF1 in an m6A-YTHDF2-dependent manner[J]. Mol Ther, 2022, 30(3): 1104-1118. |
54 | WANG L L, HUI H, AGRAWAL K, et al. m6 A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy[J]. EMBO J, 2020, 39(20): e104514. |
55 | BAO Y, ZHAI J N, CHEN H R, et al. Targeting m6A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer[J]. Gut, 2023, 72(8): 1497-1509. |
56 | HUANG Y, SU R, SHENG Y, et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia[J]. Cancer Cell, 2019, 35(4): 677-691.e10. |
57 | YANKOVA E, BLACKABY W, ALBERTELLA M, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia[J]. Nature, 2021, 593(7860): 597-601. |
58 | ZHANG B, WU Q, LI B, et al. m6A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer[J]. Mol Cancer, 2020, 19(1): 53. |
[1] | 杜少倩, 陶梦玉, 曹源, 王红霞, 胡孝渠, 范广建, 臧丽娟. CXCL9在乳腺癌中的表达及其与肿瘤免疫浸润特征的相关性研究[J]. 上海交通大学学报(医学版), 2023, 43(7): 860-872. |
[2] | 周晓雯, 李倩, 张哲, 沈键锋, 范先群. RBX1通过STAT1调控葡萄膜黑色素瘤免疫相关基因[J]. 上海交通大学学报(医学版), 2023, 43(6): 709-717. |
[3] | 于莉, 苏显都, 张敏, 李雅慧, 王乐. 基于生物学分析构建及验证棕榈酰化相关酶长链非编码RNA的肝癌预后风险模型[J]. 上海交通大学学报(医学版), 2023, 43(6): 747-754. |
[4] | 赵卓明, 刘振浩, 鲁曼曼, 张钰, 许林锋, 谢鹭. 基于TCR组库分析流程的非小细胞肺癌特征分析[J]. 上海交通大学学报(医学版), 2023, 43(12): 1520-1528. |
[5] | 刘君君, 逯素梅, 张炳杨, 李永清, 马万山. 高脂饮食诱导的小鼠NAFLD模型肝组织中m6A甲基化修饰表达谱分析[J]. 上海交通大学学报(医学版), 2023, 43(10): 1227-1235. |
[6] | 卢雨, 王昊, 巴乾. 肠道菌群在肝癌发生发展及治疗中的作用研究进展[J]. 上海交通大学学报(医学版), 2022, 42(7): 939-944. |
[7] | 张修齐, 沈柏用. 胰腺导管腺癌神经侵袭的细胞学机制研究进展[J]. 上海交通大学学报(医学版), 2022, 42(6): 833-838. |
[8] | 许静轩, 杜少倩, 曹源, 王红霞, 黄伟翼. MMP14在胰腺癌中的表达及其与肿瘤免疫微环境特征的相关性研究[J]. 上海交通大学学报(医学版), 2022, 42(3): 312-322. |
[9] | 李静威, 王俐文, 蒋玲曦, 詹茜, 陈皓, 沈柏用. 胰腺癌免疫抑制性肿瘤微环境研究综述[J]. 上海交通大学学报(医学版), 2021, 41(8): 1103-1108. |
[10] | 凌徐心仪, 张瑶, 钟华. 非小细胞肺癌免疫治疗获益人群筛选的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(8): 1114-1119. |
[11] | 马韵芳, 潘丽娜, 李圳, 高蓓莉, 胡家安, 徐志红. 司美替尼下调KRAS G12V突变型非小细胞肺癌细胞PD-L1水平的探索性研究[J]. 上海交通大学学报(医学版), 2021, 41(6): 741-748. |
[12] | 李玲玲, 李倩, 李明玉, 刘峥, 沈倩诚. 成人与儿童急性髓系白血病患者肿瘤免疫相关的差异表达基因分析[J]. 上海交通大学学报(医学版), 2021, 41(5): 579-587. |
[13] | 赵伟光,刘志宏. 肿瘤相关成纤维细胞调控肿瘤免疫炎症微环境的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(9): 1288-1293. |
[14] | 何春明,尹 航,郑佳杰,唐 健,傅于捷,赵晓菁. 肺癌免疫治疗:免疫抑制细胞和肺内免疫[J]. 上海交通大学学报(医学版), 2020, 40(8): 1137-1142. |
[15] | 刘 洁,仇晓春. 乳腺肿瘤干细胞研究热点及趋势分析[J]. 上海交通大学学报(医学版), 2020, 40(7): 881-888. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||