1 |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33.
|
2 |
SCHMID P, ADAMS S, RUGO H S, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer[J]. N Engl J Med, 2018, 379(22): 2108-2121.
|
3 |
FRANZOI M A, DE AZAMBUJA E. Atezolizumab in metastatic triple-negative breast cancer: IMpassion130 and 131 trials-how to explain different results?[J]. ESMO Open, 2020, 5(6): e001112.
|
4 |
CORTES J, CESCON D W, RUGO H S, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial[J]. Lancet, 2020, 396(10265): 1817-1828.
|
5 |
GOODING A J, ZHANG B, GUNAWARDANE L, et al. The lncRNA BORG facilitates the survival and chemoresistance of triple-negative breast cancers[J]. Oncogene, 2019, 38(12): 2020-2041.
|
6 |
GONÇALVES H, GUERRA M R, DUARTE CINTRA J R, et al. Survival study of triple-negative and non-triple-negative breast cancer in a Brazilian cohort[J]. Clin Med Insights Oncol, 2018, 12: 1179554918790563.
|
7 |
杨芳, 于雁. 肿瘤微环境: 肿瘤转移的关键因素[J]. 中国肺癌杂志, 2015, 18(1): 48-54.
|
|
YANG F, YU Y. Tumor microenvironment: the critical element of tumor metastasis[J]. Chinese Journal of Lung Cancer, 2015, 18(1): 48-54.
|
8 |
JIA Q, WANG A, YUAN Y, et al. Heterogeneity of the tumor immune microenvironment and its clinical relevance[J]. Exp Hematol Oncol, 2022, 11(1): 24.
|
9 |
JIA Q, WU W, WANG Y, et al. Local mutational diversity drives intratumoral immune heterogeneity in non-small cell lung cancer[J]. Nat Commun, 2018, 9(1): 5361.
|
10 |
OHTANI H. Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human colorectal cancer[J]. Cancer Immun, 2007, 7: 4.
|
11 |
BULE P, AGUIAR S I, AIRES-DA-SILVA F, et al. Chemokine-directed tumor microenvironment modulation in cancer immunotherapy[J]. Int J Mol Sci, 2021, 22(18): 9804.
|
12 |
HARLIN H, MENG Y, PETERSON A C, et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment[J]. Cancer Res, 2009, 69(7): 3077-3085.
|
13 |
MESSINA J L, FENSTERMACHER D A, ESCHRICH S, et al. 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy?[J]. Sci Rep, 2012, 2: 765.
|
14 |
FRIDMAN W H, PAGÈS F, SAUTÈS-FRIDMAN C, et al. The immune contexture in human tumours: impact on clinical outcome[J]. Nat Rev Cancer, 2012, 12(4): 298-306.
|
15 |
TENG M W, NGIOW S F, RIBAS A, et al. Classifying cancers based on T-cell infiltration and PD-L1[J]. Cancer Res, 2015, 75(11): 2139-2145.
|
16 |
GALON J, BRUNI D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies[J]. Nat Rev Drug Discov, 2019, 18(3): 197-218.
|
17 |
GARRIDO F, APTSIAURI N, DOORDUIJN E M, et al. The urgent need to recover MHC class Ⅰ in cancers for effective immunotherapy[J]. Curr Opin Immunol, 2016, 39: 44-51.
|
18 |
BONAVENTURA P, SHEKARIAN T, ALCAZER V, et al. Cold tumors: a therapeutic challenge for immunotherapy[J]. Front Immunol, 2019, 10: 168.
|
19 |
WHERRY E J, KURACHI M. Molecular and cellular insights into T cell exhaustion[J]. Nat Rev Immunol, 2015, 15(8): 486-499.
|
20 |
RIBAS A, WOLCHOK J D. Cancer immunotherapy using checkpoint blockade[J]. Science, 2018, 359(6382): 1350-1355.
|
21 |
NEWMAN A M, LIU C L, GREEN M R, et al. Robust enumeration of cell subsets from tissue expression profiles[J]. Nat Methods, 2015, 12(5): 453-457.
|
22 |
FRANCESCHINI A, SZKLARCZYK D, FRANKILD S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration[J]. Nucleic Acids Res, 2013, 41(database issue): D808-D815.
|
23 |
ADAMS S, GATTI-MAYS M E, KALINSKY K, et al. Current landscape of immunotherapy in breast cancer: a review[J]. JAMA Oncol, 2019, 5(8): 1205-1214.
|
24 |
NANDA R, CHOW L Q, DEES E C, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ⅰb KEYNOTE-012 study[J]. J Clin Oncol, 2016, 34(21): 2460-2467.
|
25 |
ADAMS S, LOI S, TOPPMEYER D, et al. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phase Ⅱ KEYNOTE-086 study[J]. Ann Oncol, 2019, 30(3): 405-411.
|
26 |
WALSER T C, MA X, KUNDU N, et al. Immune-mediated modulation of breast cancer growth and metastasis by the chemokine Mig (CXCL9) in a murine model[J]. J Immunother, 2007, 30(5): 490-498.
|
27 |
YU L, YANG X, XU C, et al. Comprehensive analysis of the expression and prognostic value of CXC chemokines in colorectal cancer[J]. Int Immunopharmacol, 2020, 89(Pt B): 107077.
|
28 |
BRONGER H, KRAEFT S, SCHWARZ-BOEGER U, et al. Modulation of CXCR3 ligand secretion by prostaglandin E2 and cyclooxygenase inhibitors in human breast cancer[J]. Breast Cancer Res, 2012, 14(1): R30.
|
29 |
Pein M, Insua-Rodríguez J, Hongu T, et al. Metastasis-initiating cells induce and exploit a fibroblast niche to fuel malignant colonization of the lungs[J]. Nat Commun, 2020, 11(1): 1494.
|
30 |
DANGAJ D, BRUAND M, GRIMM A J, et al. Cooperation between constitutive and inducible chemokines enables T cell engraftment and immune attack in solid tumors[J]. Cancer Cell, 2019, 35(6): 885-900.e10.
|