收稿日期: 2023-05-19
录用日期: 2023-12-11
网络出版日期: 2024-02-28
基金资助
河南省自然科学基金青年基金项目(232300420273);河南省医学科技攻关计划联合共建项目(LHGJ20230690);国家自然科学基金青年基金项目(82205021);河南省科技攻关项目(212102311083);河南中医药大学科研苗圃工程项目(MP2020-16)
Study on intercellular communication and key genes of smooth muscle cells in human coronary atherosclerosis based on single cell sequencing technology
Received date: 2023-05-19
Accepted date: 2023-12-11
Online published: 2024-02-28
Supported by
Henan Natural Science Foundation Youth Fund Project(232300420273);Henan Province Medical Science and Technology Research Plan Jointly Construction Project(LHGJ20230690);Youth Fund Project of National Natural Science Foundation of China(82205021);Henan Province Science and Technology Research Project(212102311083);Research Nursery Engineering Project of Henan University of Chinese Medicine(MP2020-16)
目的·利用单细胞RNA测序技术(single-cell?RNA?sequencing,scRNA-Seq)阐释冠状动脉粥样硬化(coronary atherosclerosis,CA)的细胞通信景观,挖掘主导细胞亚群及其关键基因。方法·下载GSE131778数据集并进行预处理、质控、降维聚类及注释;利用CellChat包进行细胞通信分析,识别主导细胞亚群。利用FindAllMarker函数,筛选主导细胞亚群与其他细胞亚群间的差异表达基因(differentially expressed genes,DEGs),并构建其蛋白相互作用(protein-protein interaction,PPI)网络,将Degree算法排序前五位的DEGs作为关键基因。将关键基因与CellChat分析出的细胞通信网络进行匹配和挖掘,获取关键基因参与的配体-受体对(ligand-receptor pair,L-R)及其介导的信号通路,并对结果进行可视化。构建动脉粥样硬化小鼠模型,并利用反转录聚合酶链式反应检测关键基因在颈动脉粥样硬化病变处的表达情况。结果·在CA病变处共鉴定出11个细胞亚群,包括平滑肌细胞、内皮细胞、巨噬细胞、单核细胞等。细胞通信分析结果显示,CellChat在11个细胞亚群中检测到70对显著的L-R和26条相关的信号通路;平滑肌细胞处于通信活跃状态,与其他细胞亚群间相互作用的次数和强度最显著,是主导细胞亚群。DEGs筛选结果显示,平滑肌细胞亚群和其他细胞亚群之间共有206个DEGs,其中ITGB2、PTPRC、CCL2、DCN、IGF1被识别为关键基因。关键基因介导的细胞通信分析结果显示:CCL2与ACKR1形成L-R,通过介导CCL信号通路参与平滑肌细胞与内皮细胞间的通信网络;ITGB2分别与ITGAM、ITGAX组成受体复合物,再与C3形成L-R介导补体信号通路,参与平滑肌细胞与巨噬细胞、单核细胞间的通信网络。动物实验对关键基因的验证结果同生物信息学分析的结果一致。结论·平滑肌细胞在CA病理过程中是主导细胞,与其他细胞间有广泛的通信网络,可通过CCL2-ACKR1、C3-(ITGAM+ITGB2)和C3-(ITGAX+ITGB2)介导的CCL和补体信号通路,与内皮细胞、巨噬细胞和单核细胞构建细胞通信网络。
司春婴 , 王建茹 , 李晓辉 , 王永霞 , 关怀敏 . 基于单细胞测序技术解析冠状动脉粥样硬化患者平滑肌细胞的细胞间通信及关键基因[J]. 上海交通大学学报(医学版), 2024 , 44(2) : 169 -182 . DOI: 10.3969/j.issn.1674-8115.2024.02.003
Objective ·To use single-cell RNA sequencing (scRNA-Seq) technology to interpret the cellular communication landscape of coronary atherosclerosis (CA), and to explore the dominant cell subsets and their key genes. Methods ·The GSE131778 data set was downloaded and preprocessed, and quality controlling, dimension reduction clustering and annotation were carried out. Then cell communication analysis was conducted by using CellChat package to identify dominant cell subsets. The FindAllMarker function was used to screen differentially expressed genes (DEGs) between the dominant cell subpopulation and other cell subpopulations, and its protein-protein interaction (PPI) network was constructed. The DEGs ranked in the top five of the Degree algorithm were taken as key genes. Then, the key genes were matched and mined with the cell communication network analyzed by CellChat to obtain the ligand-receptor pairs (L-R) and the signal pathways mediated by the key genes, and the results were visualized. At the same time, the atherosclerosis mouse model was constructed and RT-PCR was used to detect the expression of key genes in carotid atherosclerosis lesions. Results ·A total of 11 cell subsets were identified in CA lesions, including smooth muscle cells, endothelial cells, macrophages, monocytes, etc. Cell communication results showed that CellChat detected 70 significant L-R and 26 related signal pathways in 11 cell subsets. Smooth muscle cell was the dominant cell subgroup with the most significant interaction frequency and intensity with other cell subgroups in the active state of communication. The results of DEGs screening showed that there were 206 DEGs between smooth muscle cell subsets and other cell subsets, among which ITGB2, PTPRC, CCL2, DCN and IGF1 were identified as key genes. The results of cell communication mediated by key genes showed that CCL2 and ACKR1 formed L-R and participated in the communication network between smooth muscle cells and endothelial cells through mediating CCL signaling pathway. ITGB2 formed receptor complexes withITGAM and ITGAX respectively, and then formed L-R with C3 to mediate the complement signal pathway, participating in the communication network among smooth muscle cells, macrophages and monocytes. The validation results of hub genes in animal experiments were consistent with the results of bioinformatics analysis. Conclusion ·Smooth muscle cells are the dominant cells in the pathological process of CA, and have extensive communication networks with other cells. They can construct cellular communication networks with endothelial cells, macrophages and monocytes through CCL and complement signaling pathways mediated by CCL2-ACKR1, C3-(ITGAM+ITGB2) and C3-(ITGAX+ITGB2).
1 | 郝俊海, 林展翼. 冠状动脉粥样硬化相关生物力学因素的研究进展[J]. 中国动脉硬化杂志, 2020, 28(11): 1009-1012. |
1 | HAO J H, LIN Z Y. Research progress of biomechanical factors related to coronary atherosclerosis[J]. Chinese Journal of Arteriosclerosis, 2020, 28(11): 1009-1012. |
2 | HOSEN M R, GOODY P R, ZIETZER A, et al. MicroRNAs as master regulators of atherosclerosis: from pathogenesis to novel therapeutic options[J]. Antioxid Redox Signal, 2020, 33(9): 621-644. |
3 | D'ASCENZO F, AGOSTONI P, ABBATE A, et al. Atherosclerotic coronary plaque regression and the risk of adverse cardiovascular events: a meta-regression of randomized clinical trials[J]. Atherosclerosis, 2013, 226(1): 178-185. |
4 | BERUMEN SáNCHEZ G, BUNN K E, PUA H H, et al. Extracellular vesicles: mediators of intercellular communication in tissue injury and disease[J]. Cell Commun Signal, 2021, 19(1): 104. |
5 | CHARLA E, MERCER J, MAFFIA P, et al. Extracellular vesicle signalling in atherosclerosis[J]. Cell Signal, 2020, 75: 109751. |
6 | ZHANG L Z, LEI S. Changes of junctions of endothelial cells in coronary sclerosis: a review[J]. Chronic Dis Transl Med, 2016, 2(1): 22-26. |
7 | WEN D, WANG X, CHEN R, et al. Single-cell RNA sequencing reveals the pathogenic relevance of intracranial atherosclerosis in blood blister-like aneurysms[J]. Front Immunol, 2022, 13: 927125. |
8 | JIN S, RAMOS R. Computational exploration of cellular communication in skin from emerging single-cell and spatial transcriptomic data[J]. Biochem Soc Trans, 2022, 50(1): 297-308. |
9 | POTTER S S. Single-cell RNA sequencing for the study of development, physiology and disease[J]. Nat Rev Nephrol, 2018, 14(8): 479-492. |
10 | COCHAIN C, VAFADARNEJAD E, ARAMPATZI P, et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis[J]. Circ Res, 2018, 122(12): 1661-1674. |
11 | WIRKA R C, WAGH D, PAIK D T, et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis[J]. Nat Med, 2019, 25(8): 1280-1289. |
12 | TILLIE R J H A, VAN KUIJK K, SLUIMER J C. Fibroblasts in atherosclerosis: heterogeneous and plastic participants[J]. Curr Opin Lipidol, 2020, 31(5): 273-278. |
13 | 王建茹, 李晓辉. 基于单细胞RNA测序技术筛选颈动脉粥样硬化中巨噬细胞特征基因的研究[J]. 医学研究生学报, 2022, 35(10):1014-1021. |
13 | WANG J R, LI X H. Screening of macrophage characteristic genes in carotid atherosclerosis by single-cell RNA sequencing[J]. Journal of Medical Graduate students, 2022, 35(10): 1014-1021. |
14 | JIN S, GUERRERO-JUAREZ C F, ZHANG L, et al. Inference and analysis of cell-cell communication using CellChat[J]. Nat Commun, 2021, 12(1): 1088. |
15 | 王建茹, 朱明军, 王永霞, 等. 基于网络药理学和分子对接技术探讨芪参益气滴丸改善心肌缺血再灌注损伤的潜在分子机制[J]. 中医学报, 2021, 36(7): 1537-1544. |
15 | WANG J R, ZHU M J, WANG Y X, et al. Study on the potential molecular mechanism of Qishenyiqi Dropping pills to improve myocardial ischemia reperfusion injury based on network pharmacology and molecular docking technique[J]. Journal of Traditional Chinese Medicine, 2021, 36(7): 1537-1544. |
16 | 陈馨浓, 葛其卉, 赵一璇, 等. 四妙勇安汤对动脉粥样硬化巨噬细胞泡沫化的影响[J].中国中西医结合杂志, 2023, 43(6): 705-711. |
16 | CHEN X N, GE Q H, ZHAO Y X, et al.Effect of Simiao Yongan Decoction on macrophage foam cell formation in atherosclerosis[J].Chinese Journal of Integrated Traditional and Western Medicine, 2023, 43(6): 705-711. |
17 | XU H, NI Y Q, LIU Y S. Mechanisms of action of miRNAs and lncRNAs in extracellular vesicle in atherosclerosis[J]. Front Cardiovasc Med, 2021, 8: 733985. |
18 | RAMILOWSKI J A, GOLDBERG T, HARSHBARGER J, et al. A draft network of ligand-receptor-mediated multicellular signalling in human[J]. Nat Commun, 2015, 6: 7866. |
19 | EFREMOVA M, VENTO-TORMO M, TEICHMANN S A, et al. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes[J]. Nat Protoc, 2020, 15(4): 1484-1506. |
20 | SHI X, GUO L W, SEEDIAL S M, et al. TGF-β/Smad3 inhibit vascular smooth muscle cell apoptosis through an autocrine signaling mechanism involving VEGF-A[J]. Cell Death Dis, 2014, 5(7): e1317. |
21 | OSTRIKER A, HORITA H N, POCZOBUTT J, et al. Vascular smooth muscle cell-derived transforming growth factor-β promotes maturation of activated, neointima lesion-like macrophages[J]. Arterioscler Thromb Vasc Biol, 2014, 34(4): 877-886. |
22 | BADIMON L, STOREY R F, VILAHUR G. Update on lipids, inflammation and atherothrombosis[J]. Thromb Haemost, 2011, 105(Suppl 1): S34-S42. |
23 | MERCHED A, TOLLEFSON K, CHAN L. β2 integrins modulate the initiation and progression of atherosclerosis in low-density lipoprotein receptor knockout mice[J]. Cardiovasc Res, 2010, 85(4): 853-863. |
24 | KANG S W, KIM M S, KIM H S, et al. Celastrol attenuates adipokine resistin-associated matrix interaction and migration of vascular smooth muscle cells[J]. J Cell Biochem, 2013, 114(2): 398-408. |
25 | AL BARASHDI M A, ALI A, MCMULLIN M F, et al. Protein tyrosine phosphatase receptor type C (PTPRC or CD45)[J]. J Clin Pathol, 2021, 74(9): 548-552. |
26 | 王玉, 孙晓宇, 罗亚, 等. 冠状动脉粥样斑块内CD45表达水平与病灶结构变化的关系[J]. 中国动脉硬化杂志, 2019, 27(2): 114-119, 140. |
26 | WANG Y, SUN X Y, LUO Y, et al. Relationship between CD45 expression level and lesion structure in coronary artery plaque[J]. Chinese Journal of Arteriosclerosis, 2019, 27(2): 114-119, 140. |
27 | 胡永涛, 刘洪智. 冠心病患者外周血CD45、HMGB1水平与支架内再狭窄的相关性分析[J]. 中国循证心血管医学杂志, 2022, 14(5): 581-584. |
27 | HU Y T, LIU H Z. Correlation analysis of peripheral blood CD45, HMGB1 and stent restenosis in patients with coronary heart disease[J]. Chinese Journal of Evidence-Based Cardiovascular Medicine, 2022, 14(5): 581-584. |
28 | ZHU S, LIU M, BENNETT S, et al. The molecular structure and role of CCL2 (MCP-1) and C-C chemokine receptor CCR2 in skeletal biology and diseases[J]. J Cell Physiol, 2021, 236(10): 7211-7222. |
29 | OSONOI Y, MITA T, AZUMA K, et al. Defective autophagy in vascular smooth muscle cells enhances cell death and atherosclerosis[J]. Autophagy, 2018, 14(11): 1991-2006. |
30 | YU B, WONG M M, POTTER C M, et al. Vascular stem/progenitor cell migration induced by smooth muscle cell-derived chemokine (C-C motif) ligand 2 and chemokine (C-X-C motif) ligand 1 contributes to neointima formation[J]. Stem Cells, 2016, 34(9): 2368-2380. |
31 | SCHOBER A, ZERNECKE A, LIEHN E A, et al. Crucial role of the CCL2/CCR2 axis in neointimal hyperplasia after arterial injury in hyperlipidemic mice involves early monocyte recruitment and CCL2 presentation on platelets[J]. Circ Res, 2004, 95(11): 1125-1133. |
32 | KUNNAS T, SOLAKIVI T, M??TT? K, et al. Decorin genotypes, serum glucose, heart rate, and cerebrovascular events: the Tampere adult population cardiovascular risk study[J]. Genet Test Mol Biomarkers, 2016, 20(8): 416-419. |
33 | AL HAJ ZEN A, CALIGIURI G, SAINZ J, et al. Decorin overexpression reduces atherosclerosis development in apolipoprotein E-deficient mice[J]. Atherosclerosis, 2006, 187(1): 31-39. |
34 | BURTON D G A, GILES P J, SHEERIN A N P, et al. Microarray analysis of senescent vascular smooth muscle cells: a link to atherosclerosis and vascular calcification[J]. Exp Gerontol, 2009, 44(10): 659-665. |
35 | FIERRO-MACíAS A E, FLORIANO-SáNCHEZ E, MENA-BURCIAGA V M, et al. Association between IGF system and PAPP-A in coronary atherosclerosis[J]. Arch Cardiol Mex, 2016, 86(2): 148-156. |
36 | CHONG H, WEI Z, NA M, et al. The PGC-1α/NRF1/miR-378a axis protects vascular smooth muscle cells from FFA-induced proliferation, migration and inflammation in atherosclerosis[J]. Atherosclerosis, 2020, 297: 136-145. |
37 | 涂少文, 陈云宪, 唐良秋. 趋化因子在动脉粥样硬化中的作用及研究进展[J]. 中国医学创新, 2022, 19(15): 175-179. |
37 | TU S W, CHEN Y X, TANG L Q. The role and research progress of chemokines in atherosclerosis[J]. Chinese Medical Innovation, 2022, 19(15): 175-179. |
38 | HERNáNDEZ-AGUILERA A, FIBLA M, CABRé N, et al. Chemokine (C-C motif) ligand 2 and coronary artery disease: tissue expression of functional and atypical receptors[J]. Cytokine, 2020, 126: 154923. |
39 | SINGH S R, SUTCLIFFE A, KAUR D, et al. CCL2 release by airway smooth muscle is increased in asthma and promotes fibrocyte migration[J]. Allergy, 2014, 69(9): 1189-1197. |
40 | GIRBL T, LENN T, PEREZ L, et al. Distinct compartmentalization of the chemokines CXCL1 and CXCL2 and the atypical receptor ACKR1 determine discrete stages of neutrophil diapedesis[J]. Immunity, 2018, 49(6): 1062-1076.e6. |
41 | LIAO Z, JIN Y, CHU Y, et al. Single-cell transcriptome analysis reveals aberrant stromal cells and heterogeneous endothelial cells in alcohol-induced osteonecrosis of the femoral head[J]. Commun Biol, 2022, 5(1): 324. |
42 | SPEIDL W S, KASTL S P, HUBER K, et al. Complement in atherosclerosis: friend or foe?[J]. J Thromb Haemost, 2011, 9(3): 428-440. |
43 | 刘艾婷, 彭旷, 欧蕾宇, 等. 补体系统在动脉粥样硬化中的作用研究进展[J]. 中国动脉硬化杂志, 2021, 29(4): 363-368. |
43 | LIU A T, PENG K, OU L Y, et al. Research progress on the role of complement system in atherosclerosis[J]. Chinese Journal of Arteriosclerosis, 2021, 29(4): 363-368. |
44 | WAN J X, FUKUDA N, ENDO M, et al. Complement 3 is involved in changing the phenotype of human glomerular mesangial cells[J]. J Cell Physiol, 2007, 213(2): 495-501. |
45 | RUS H, CUDRICI C, NICULESCU F. The role of the complement system in innate immunity[J]. Immunol Res, 2005, 33(2): 103-112. |
46 | BUYANNEMEKH D, NHAM S U. Characterization of αX Ⅰ-domain binding to receptors for advanced glycation end products (RAGE)[J]. Mol Cells, 2017, 40(5): 355-362. |
47 | YAKUBENKO V P, BHATTACHARJEE A, PLUSKOTA E, et al. αMβ2 integrin activation prevents alternative activation of human and murine macrophages and impedes foam cell formation[J]. Circ Res, 2011, 108(5): 544-554. |
48 | BAJTAY Z. Biologia futura: stories about the functions of β2-integrins in human phagocytes[J]. Biol Futur, 2021, 72(1): 7-13. |
49 | WANG M, GU M, LIU L, et al. Single-cell RNA sequencing (scRNA-seq) in cardiac tissue: applications and limitations[J]. Vasc Health Risk Manag, 2021, 17: 641-657. |
/
〈 |
|
〉 |