收稿日期: 2024-02-29
录用日期: 2024-03-27
网络出版日期: 2024-06-28
基金资助
国家自然科学基金(82271004);上海市自然科学基金(21ZR1436900);海南省自然科学基金(824MS152);上海交通大学医学院附属第九人民医院生物样本库(YBKB202101);上海交通大学医学院附属第九人民医院罕见病注册登记项目(SH9H-2023-T492-2);上海交通大学医学院附属第九人民医院研究型医师(2022yxyjxys-wf);上海交通大学医学院附属第九人民医院“交叉”研究基金项目(JYJC202305)
Dentofacial phenotype of non-syndromic tooth agenesis patients with PAX9 mutation
Received date: 2024-02-29
Accepted date: 2024-03-27
Online published: 2024-06-28
Supported by
National Natural Science Foundation of China(82271004);Natural Science Foundation of Shanghai(21ZR1436900);Hainan Provincial Natural Science Foundation(824MS152);Project of Biobank of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine(YBKB202101);Rare Disease Registration Platform of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine(SH9H-2023-T492-2);Project of Research Physician of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine(2022yxyjxys-wf);“Cross” Project Cooperation Fund of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine(JYJC202305)
目的·评估配对盒基因9(paired box gene 9,PAX9)突变非综合征型先天缺牙(non-syndromic tooth agenesis,NSTA)患者的牙颌面表型。方法·对2016年1月—2023年12月于上海交通大学医学院附属第九人民医院口腔第二门诊部就诊的NSTA患者进行全外显子组测序,筛查PAX9突变患者。对筛查到的患者采用曲面体层摄影片评估缺牙的位置和数目,采用X射线头影测量评估患者的牙颌面畸形情况。结果·7例PAX9突变的NSTA患者纳入研究,男性3例(42.9%),女性4例(57.1%)。患者首诊年龄7~31岁,平均(19.7±8.0)岁。7例患者均携带PAX9杂合突变,其中4例为错义突变,3例为移码突变。平均缺失恒牙(15.9±2.9)颗,上颌缺失数[(9.6±2.6)颗]略多于下颌[(6.3±2.4)颗](P=0.030)。上颌第二磨牙(100.0%)、上颌尖牙(85.7%)、下颌第二前磨牙(85.7%)为最常见的缺失位点,下颌侧切牙(14.3%)、下颌尖牙(14.3%)为最少缺失的位点。移码突变的患者缺牙数[(18.3±2.1)颗]多于错义突变[(14.0±1.8)颗](P=0.032)。X射线头影测量结果显示:PAX9突变成年患者上牙槽座角(angle sella-nasion-subspinale,SNA)、颌凸角(angle nasion-subspinale-subspinale-porion,NA-APo)和前颅底长度(sella-nasion,S-N)均明显小于正常参考范围,提示上颌后缩,前颅底矢状向发育不足;面角(frankfort horizontal plane-nasion-porion,FH-NPo)大于参考值、Y轴角(Y axis)小于参考值,提示下颌前伸;上/下牙槽座角(angle subspinale-nasion-supramental,ANB)小于参考值,提示骨性Ⅲ类错畸形;上中切牙角(angle upper central incisor-nasion-subspinale,angle U1-NA)大于参考值,提示上中切牙唇倾;下中切牙-下颌平面角(angle lower central incisor-mandibular plane,IMPA)、下中切牙凸度(lower central incisor-nasion-supramental,L1-NB)小于参考值,提示下中切牙舌倾,上下前牙反
倾向。结论·较为全面地报道了PAX9突变NSTA患者的牙颌面表型,有利于进一步理解PAX9在人类颌面部发育中的作用。
窦嘉琪 , 高洁 , 卞晓玲 , 王凤 , 代庆刚 , 吴轶群 . 伴有PAX9突变非综合征型先天缺牙患者的牙颌面表型研究[J]. 上海交通大学学报(医学版), 2024 , 44(6) : 687 -693 . DOI: 10.3969/j.issn.1674-8115.2024.06.003
Objective ·To evaluate the dentofacial phenotype in non-syndromic tooth agenesis (NSTA) patients with paired box gene 9 (PAX9) mutation. Methods ·Patients with NSTA who visited the Department of Second Dental Center of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, between January 2016 and December 2023 received whole-exome sequencing to screen PAX9 mutation. The location and number of missing teeth were evaluated by oral pantomography, and dentofacial deformities were evaluated by X-ray cephalometrics. Results ·Seven patients with PAX9 mutation were included in the study, including 3 males (42.9%) and 4 females (57.1%). The patients were 7?31 years old at first visit, with a mean age of (19.7±8.0) years old. All the 7 patients were PAX9 heterozygotes, of which 4 were missense and 3 were frameshift. The average number of missing teeth was 15.9±2.9. The number of missing teeth in maxilla (9.6±2.6) was slightly higher than that in mandible (6.3±2.4) (P=0.030). Maxillary second molar (100.0%), maxillary canine (85.7%) and mandibular second premolar (85.7%) were the three most common missing teeth, while mandibular lateral incisor (14.3%) and mandibular canine (14.3%) were the two least missing teeth. Patients with frameshift mutation had more missing teeth (18.3±2.1) than those with missense mutation (14.0±1.8) (P=0.032). X-ray cephalometrics analysis results showed that the angle sella-nasion-subspinale (SNA), angle nasion-subspinale-subspinale-porion (NA-Apo) and sella-nasion (S-N) in adult patients with PAX9 mutation were significantly lower than the normal reference values, suggesting a shorter anterior cranial base and maxillary length. The frankfort horizontal plane-nasion-porion (FH-NPo) was higher than the reference value, and the Y-axis was lower than the reference value, indicating a more prognathic mandible. The angle subspinale-nasion-supramental (ANB) was lower than the reference value, indicating a skeletal angle Ⅲ malocclusion. The angle upper central incisor-nasion-subspinale (angle U1-NA) was higher than the reference value, indicating a lip inclination of maxillary central incisor. The angle lower central incisor-mandibular plane (IMPA) and lower central incisor-nasion-supramental (L1-NB) were lower than the reference values, indicating a retroclination of the mandibular central incisor, and crossbite in the maxillary and mandibular anterior teeth. Conclusion ·The dentofacial phenotype of PAX9-mutated patients with NSTA is reported comprehensively. It is helpful to improve the understanding of the role of PAX9 in human maxillofacial development.
1 | POLDER B J, VAN′T HOF M A, VAN DER LINDEN F P, et al. A meta-analysis of the prevalence of dental agenesis of permanent teeth[J]. Community Dent Oral Epidemiol, 2004, 32(3): 217-226. |
2 | KHALAF K, MISKELLY J, VOGE E, et al. Prevalence of hypodontia and associated factors: a systematic review and meta-analysis[J]. J Orthod, 2014, 41(4): 299-316. |
3 | VASTARDIS H. The genetics of human tooth agenesis: new discoveries for understanding dental anomalies[J]. Am J Orthod Dentofacial Orthop, 2000, 117(6): 650-656. |
4 | LAN R, WU Y Q, DAI Q G, et al. Gene mutations and chromosomal abnormalities in syndromes with tooth agenesis[J]. Oral Dis, 2023, 29(6): 2401-2408. |
5 | YU K, DOU J Q, HUANG W, et al. Expanding the genetic spectrum of tooth agenesis using whole-exome sequencing[J]. Clin Genet, 2022, 102(6): 503-516. |
6 | YU M, WONG S W, HAN D, et al. Genetic analysis: Wnt and other pathways in nonsyndromic tooth agenesis[J]. Oral Dis, 2019, 25(3): 646-651. |
7 | SANDHU M, MALIK P, SAHA R. Multiple dental and skeletal abnormalities in an individual with Filippi syndrome[J]. Case Rep Dent, 2013, 2013: 845405. |
8 | TUNA E B, MAR?AN G, GEN?AY K, et al. Craniofacial and dental characteristics of Kabuki syndrome: nine years cephalometric follow-up[J]. J Clin Pediatr Dent, 2012, 36(4): 393-400. |
9 | GUNASHEKHAR M, HAMEED M S, BOKHARI S K. Oral and dental manifestations in Rubinstein-Taybi syndrome: report of a rare case[J]. Prim Dent Care, 2012, 19(1): 35-38. |
10 | VERMA L, PASSI S, GAUBA K. Brachman de Lange syndrome[J]. Contemp Clin Dent, 2010, 1(4): 268-270. |
11 | ERCAL D, SAY B. Cerebro-oculo-nasal syndrome: another case and review of the literature[J]. Clin Dysmorphol, 1998, 7(2): 139-141. |
12 | 吴钊仪, 岳海棠, 李健, 等. KMT2D基因新发双突变致歌舞伎面谱综合征的研究[J]. 中华口腔医学杂志, 2023, 58(8): 809-814. |
12 | WU Z Y, YUE H T, LI J, et al. Two novel and de novo KMT2D mutations on the same allele cause Kabuki syndrome[J]. Chinese Journal of Stomatology, 2023, 58(8): 809-814. |
13 | FOURNIER B P, BRUNEAU M H, TOUPENAY S, et al. Patterns of dental agenesis highlight the nature of the causative mutated genes[J]. J Dent Res, 2018, 97(12): 1306-1316. |
14 | SARKAR T, RANJAN P, KANATHUR S, et al. An in vitro and computational validation of a novel loss-of-functional mutation in PAX9 associated with non-syndromic tooth agenesis[J]. Mol Genet Genomics, 2023, 298(1): 183-199. |
15 | BHOL C S, PATIL S, SAHU B B, et al. The clinical significance and correlative signaling pathways of paired box gene 9 in development and carcinogenesis[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(1): 188561. |
16 | PETERS H, NEUBüSER A, BALLING R. Pax genes and organogenesis: Pax9 meets tooth development[J]. Eur J Oral Sci, 1998, 106(Suppl 1): 38-43. |
17 | CHU K Y, WANG Y L, CHEN J T, et al. PAX9 mutations and genetic synergism in familial tooth agenesis[J]. Ann N Y Acad Sci, 2023, 1524(1): 87-96. |
18 | LI R, CHEN Z, YU Q, et al. The function and regulatory network of Pax9 gene in palate development[J]. J Dent Res, 2019, 98(3): 277-287. |
19 | NAKATOMI M, LUDWIG K U, KNAPP M, et al. Msx1 deficiency interacts with hypoxia and induces a morphogenetic regulation during mouse lip development[J]. Development, 2020, 147(21): dev189175. |
20 | BONCZEK O, KREJCI P, IZAKOVICOVA-HOLLA L, et al. Tooth agenesis: what do we know and is there a connection to cancer?[J]. Clin Genet, 2021, 99(4): 493-502. |
21 | KAUSHAL K, KIM E J, TYAGI A, et al. Genome-wide screening for deubiquitinase subfamily identifies ubiquitin-specific protease 49 as a novel regulator of odontogenesis[J]. Cell Death Differ, 2022, 29(9): 1689-1704. |
22 | RAHMAN M M, LAI Y C, HUSNA A A, et al. Micro RNA transcriptome profile in canine oral melanoma[J]. Int J Mol Sci, 2019, 20(19): 4832. |
23 | LAN Y, XU J Y, JIANG R L. Cellular and molecular mechanisms of palatogenesis[J]. Curr Top Dev Biol, 2015, 115: 59-84. |
24 | JIA S H, ZHOU J, D'SOUZA R N. Pax9's dual roles in modulating Wnt signaling during murine palatogenesis[J]. Dev Dyn, 2020, 249(10): 1274-1284. |
25 | PETERS H, NEUBüSER A, KRATOCHWIL K, et al. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities[J]. Genes Dev, 1998, 12(17): 2735-2747. |
26 | KIST R, GREALLY E, PETERS H. Derivation of a mouse model for conditional inactivation of Pax9[J]. Genesis, 2007, 45(7): 460-464. |
27 | BONCZEK O, BALCAR V J, ?ERY O. PAX9 gene mutations and tooth agenesis: a review[J]. Clin Genet, 2017, 92(5): 467-476. |
28 | WANG Y, GROPPE J C, WU J F, et al. Pathogenic mechanisms of tooth agenesis linked to paired domain mutations in human PAX9[J]. Hum Mol Genet, 2009, 18(15): 2863-2874. |
29 | INTARAK N, TONGCHAIRATI K, TERMTEERAPORNPIMOL K, et al. Tooth agenesis patterns and variants in PAX9: a systematic review[J]. Jpn Dent Sci Rev, 2023, 59: 129-137. |
30 | LIU H C, LIU H B, SU L X, et al. Four novel PAX9 variants and the PAX9-related non-syndromic tooth agenesis patterns[J]. Int J Mol Sci, 2022, 23(15): 8142. |
31 | WONG S W, HAN D, ZHANG H, et al. Nine novel PAX9 mutations and a distinct tooth agenesis genotype-phenotype[J]. J Dent Res, 2018, 97(2): 155-162. |
32 | FAUZI N H, ARDINI Y D, ZAINUDDIN Z, et al. A review on non-syndromic tooth agenesis associated with PAX9 mutations[J]. Jpn Dent Sci Rev, 2018, 54(1): 30-36. |
33 | LEE Y J, LEE Y J, KIM Y J, et al. Novel PAX9 mutations causing isolated oligodontia[J]. J Pers Med, 2024, 14(2): 191. |
34 | LEI R, QIU X L, HAN Y, et al. Identification and functional study of a novel variant of PAX9 causing tooth agenesis[J]. Oral Dis, 2024. DOI: 10.1111/odi.14937. |
35 | ZHOU M Q, ZHANG H, CAMHI H, et al. Analyses of oligodontia phenotypes and genetic etiologies[J]. Int J Oral Sci, 2021, 13(1): 32. |
36 | JARA-ESPEJO M, HAWKINS M T R, FOGALLI G B, et al. Folding stability of Pax9 intronic G-quadruplex correlates with relative molar size in eutherians[J]. Mol Biol Evol, 2021, 38(5): 1860-1873. |
37 | MOSS M L, SALENTIJN L. The primary role of functional matrices in facial growth[J]. Am J Orthod, 1969, 55(6): 566-577. |
38 | WISTH P J, THUNHOLD K, B?E O E. The craniofacial morphology of individuals with hypodontia[J]. Acta Odontol Scand, 1974, 32(4): 281-290. |
39 | ROALD K L, WISTH P J, B?E O E. Changes in cranio-facial morphology of individuals with hypodontia between the ages of 9 and 16[J]. Acta Odontol Scand, 1982, 40(2): 65-74. |
40 | SARN?S K V, RUNE B. The facial profile in advanced hypodontia: a mixed longitudinal study of 141 children[J]. Eur J Orthod, 1983, 5(2): 133-143. |
41 | OGAARD B, KROGSTAD O. Craniofacial structure and soft tissue profile in patients with severe hypodontia[J]. Am J Orthod Dentofacial Orthop, 1995, 108(5): 472-477. |
42 | BEN-BASSAT Y, BRIN I. Skeletodental patterns in patients with multiple congenitally missing teeth[J]. Am J Orthod Dentofacial Orthop, 2003, 124(5): 521-525. |
43 | ENDO T, YOSHINO S, OZOE R, et al. Association of advanced hypodontia and craniofacial morphology in Japanese orthodontic patients[J]. Odontology, 2004, 92(1): 48-53. |
44 | BJ?RK A. Sutural growth of the upper face studied by the implant method[J]. Acta Odontol Scand, 1966, 24(2): 109-127. |
/
〈 |
|
〉 |