收稿日期: 2024-01-06
录用日期: 2024-02-28
网络出版日期: 2024-06-11
基金资助
上海市临床重点专科建设项目(SHSLCZDZK03701)
Analysis of impact of type 1 diabetes on colorectal cancer by using two-sample Mendelian randomization
Received date: 2024-01-06
Accepted date: 2024-02-28
Online published: 2024-06-11
Supported by
Shanghai Municipal Key Clinical Specialty Construction Project(SHSLCZDZK03701)
目的·利用孟德尔随机化法(Mendelian randomization,MR)研究1型糖尿病与结直肠癌间潜在的因果关系。方法·采用两样本双向MR分析评估1型糖尿病与结直肠癌的因果关系。研究数据均来自IEU Open GWAS Project数据库。1型糖尿病的数据集包括患者9 266例和对照人群15 574例,包含12 783 129个单核苷酸多态性(single nucleotide polymorphism,SNP)的关联分析;结直肠癌的数据集包括患者5 657例和对照人群372 016例,包含29 999 696个SNP的关联分析。筛选工具变量SNP,以逆方差加权(inverse variance weighted,IVW)法结果作为效应的主要指标,同时将MR-Egger回归、加权中位数法、基于众数的简单估计、基于众数的加权估计4种方法结果作为参考。采用留一法检验敏感性,采用IVW法和MR-Egger法进行Cochran's Q检验判断异质性,MR-pleiotropy函数检验多效性,采用Steiger检验进行方向性研究。采用共定位分析评估1型糖尿病和结直肠癌之间的效应是否由相同的SNP引起,采用交叉性状连锁不平衡得分回归(linkage disequilibrium score regression,LDSC)分析2种疾病之间的遗传相关性。所有检验采用R语言软件(4.3.1版本)执行分析。结果·经筛选后,共采用工具变量(SNP)33个。异质性检验结果发现,SNP之间存在一定的异质性(IVW法和MR-Egger法结果均P<0.05),因此效应评估采用随机效应模型的结果。正向MR分析结果显示,IVW法、MR-Egger法、加权中位数法、基于众数的加权估计均发现1型糖尿病对结直肠癌存在显著的因果效应(均P<0.05);敏感性分析显示,结果稳定。多效性检验未检测到多效性(P>0.05)。Steiger检验发现,1型糖尿病对结直肠癌的效应未受反向作用干扰。反向MR分析未发现结直肠癌对1型糖尿病存在因果效应(均P>0.05)。共定位分析结果显示,H4假设概率为45.7%,2种疾病间的因果关系不是由两者基因序列中相同的SNP引起的。LDSC分析显示2种疾病不存在遗传相关性。结论·1型糖尿病可能促进结直肠癌发生,但结直肠癌对1型糖尿病不存在影响。
俞洋 , 孟丹 , 仇奕文 , 袁见 , 朱莹杰 . 两样本孟德尔随机化法分析1型糖尿病对结直肠癌的影响[J]. 上海交通大学学报(医学版), 2024 , 44(6) : 755 -761 . DOI: 10.3969/j.issn.1674-8115.2024.06.011
Objective ·To investigate the potential causal relationship between type 1 diabetes and colorectal cancer by using Mendelian randomization (MR). Methods ·Two-sample bidirectional MR was used to investigate the causal relationship between type 1 diabetes and colorectal cancer. All research data were collected from the IEU Open GWAS Project database. The dataset of type 1 diabetes included 9 266 cases and 15 574 controls, with correlation analysis in 12 783 129 single nucleotide polymorphisms (SNPs); the dataset of colorectal cancer included 5 657 cases and 372 016 controls, with correlation analysis in 29 999 696 SNPs. The instrumental variables SNPs were screened. The results derived from the inverse-variance weighted (IVW) method were used as the main indicator of effect. The results derived from other four methods, namely MR-Egger regression, weighted median, simple mode, and weighted mode, were used as reference. Sensitivity was analyzed with the leave-one-out method. Heterogeneity was analyzed with Cochran's Q test by using both IVW and MR-Egger methods. Pleiotropy was analyzed with MR-pleiotropy function, and Steiger test was used for directional research. The colocation analysis was used to find out whether the causal relationship between type 1 diabetes and colorectal cancer was caused by the same SNP. The genetic correlation between 2 diseases was analyzed by using the linkage disequilibrium score regression (LDSC). All tests were analyzed by using R language software (version 4.3.1). Results ·After being screened, a total of 33 instrumental variables (SNPs) were used. The heterogeneity test results showed that there was heterogeneity among the SNPs (IVW and MR-Egger: P<0.05), so the effect evaluation was based on the results of the random effect model. MR analysis showed that type 1 diabetes had a significant causal effect on colorectal cancer (P<0.05) by using IVW, MR-Egger, weighted median and weighted mode. Sensitivity analysis showed that the results were stable. Pleiotropy was not detected in pleiotropy test (P>0.05). Steiger test showed that the effect of type 1 diabetes on colorectal cancer was not interfered with by the reverse effect. Reverse MR analysis showed no causal effect of colorectal cancer on type 1 diabetes (P>0.05). The results of colocalization analysis showed that the probability of H4 hypothesis was 45.7%, and the causal relationship between the 2 diseases was not caused by the same SNP in the gene sequences. LDSC analysis demonstrated that there was no genetic correlation between the two diseases. Conclusion ·Type 1 diabetes may promote colorectal cancer, but colorectal cancer has no effect on type 1 diabetes.
Key words: colorectal cancer; type 1 diabetes; Mendelian randomization
1 | URBANO F, FARELLA I, BRUNETTI G, et al. Pediatric type 1 diabetes: mechanisms and impact of technologies on comorbidities and life expectancy[J]. Int J Mol Sci, 2023, 24(15): 11980. |
2 | 罗飞宏. 儿童1型糖尿病的诊治与展望[J]. 临床儿科杂志, 2022, 40(5): 321-327. |
2 | LUO F H. Diagnosis, treatment and future of childhood type 1 diabetes mellitus[J]. Journal of Clinical Pediatrics, 2022, 40(5): 321-327. |
3 | YANG Y, HAN Z H, LI X, et al. Epidemiology and risk factors of colorectal cancer in China[J]. Chin J Cancer Res, 2020, 32(6): 729-741. |
4 | 孟令华, 常湛, 王丽慧, 等. 结直肠癌与2型糖尿病的相关性及临床特征分析[J]. 现代中西医结合杂志, 2016, 25(9): 999-1000. |
4 | MENG L H, CHANG K, WANG L H, et al. Correlation and clinical characteristics of colorectal cancer and type 2 diabetes[J]. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2016, 25(9): 999-1000. |
5 | SKRIVANKOVA V W, RICHMOND R C, WOOLF B A R, et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR statement[J]. JAMA, 2021, 326(16): 1614-1621. |
6 | FORGETTA V, MANOUSAKI D, ISTOMINE R, et al. Rare genetic variants of large effect influence risk of type 1 diabetes[J]. Diabetes, 2020, 69(4): 784-795. |
7 | SEKULA P, DEL GRECO M F, PATTARO C, et al. Mendelian randomization as an approach to assess causality using observational data[J]. J Am Soc Nephrol, 2016, 27(11): 3253-3265. |
8 | LIU N Y, WANG G, LIU C, et al. Non-alcoholic fatty liver disease and complications in type 1 and type 2 diabetes: a Mendelian randomization study[J]. Diabetes Obes Metab, 2023, 25(2): 365-376. |
9 | LIU Z R, WANG H C, YANG Z K, et al. Causal associations between type 1 diabetes mellitus and cardiovascular diseases: a Mendelian randomization study[J]. Cardiovasc Diabetol, 2023, 22(1): 236. |
10 | KAMAT M A, BLACKSHAW J A, YOUNG R, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations[J]. Bioinformatics, 2019, 35(22): 4851-4853. |
11 | BRION M J A, SHAKHBAZOV K, VISSCHER P M. Calculating statistical power in Mendelian randomization studies[J]. Int J Epidemiol, 2013, 42(5): 1497-1501. |
12 | BOWDEN J, DEL GRECO M F, MINELLI C, et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization[J]. Stat Med, 2017, 36(11): 1783-1802. |
13 | BOWDEN J, DAVEY SMITH G, BURGESS S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression[J]. Int J Epidemiol, 2015, 44(2): 512-525. |
14 | BOWDEN J, DAVEY SMITH G, HAYCOCK P C, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator[J]. Genet Epidemiol, 2016, 40(4): 304-314. |
15 | HARTWIG F P, DAVEY SMITH G, BOWDEN J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption[J]. Int J Epidemiol, 2017, 46(6): 1985-1998. |
16 | HEMANI G, TILLING K, DAVEY SMITH G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data[J]. PLoS Genet, 2017, 13(11): e1007081. |
17 | YUN Z J, GUO Z W, LI X, et al. Genetically predicted 486 blood metabolites in relation to risk of colorectal cancer: a Mendelian randomization study[J]. Cancer Med, 2023, 12(12): 13784-13799. |
18 | BULIK-SULLIVAN B K, LOH P R, FINUCANE H K, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies[J]. Nat Genet, 2015, 47(3): 291-295. |
19 | CHEN C, WANG P, ZHANG R D, et al. Mendelian randomization as a tool to gain insights into the mosaic causes of autoimmune diseases[J]. Autoimmun Rev, 2022, 21(12): 103210. |
20 | 牛相英. 2型糖尿病与结直肠癌临床病理特征的研究[D]. 银川: 宁夏医科大学, 2020. |
20 | NIU X Y. Study on the relationship between type 2 diabetes mellitus and colorectal cancer in clinicopathological characteristics[D]. Yinchuan: Ningxia Medical University, 2020. |
21 | 杨千洪, 雷新键, 李峰, 等. 结直肠癌与2型糖尿病的相关性及临床特征分析[J]. 中国卫生标准管理, 2022, 13(24): 80-83. |
21 | YANG Q H, LEI X J, LI F, et al. Correlation and clinical characteristics of colorectal cancer onset and type 2 diabetes mellitus[J]. China Health Standard Management, 2022, 13(24): 80-83. |
22 | 张欣怡, 林翔, 刘希樵, 等. 基于网络药理学和分子对接探究葛根芩连汤“异病同治”结直肠癌和2型糖尿病作用机制[J]. 中国中医药信息杂志, 2022, 29(7): 24-32. |
22 | ZHANG X Y, LIN X, LIU X Q, et al. Study on mechanism of treating different diseases with same method of Gegen Qinlian Decoction in treating colorectal cancer and type 2 diabetes mellitus based on network pharmacology and molecular docking[J]. Chinese Journal of Information on Traditional Chinese Medicine, 2022, 29(7): 24-32. |
23 | JOH H K, LEE D H, HUR J, et al. Simple sugar and sugar-sweetened beverage intake during adolescence and risk of colorectal cancer precursors[J]. Gastroenterology, 2021, 161(1): 128-142.e20. |
24 | HUR J, OTEGBEYE E, JOH H K, et al. Sugar-sweetened beverage intake in adulthood and adolescence and risk of early-onset colorectal cancer among women[J]. Gut, 2021, 70(12): 2330-2336. |
25 | LAMB M M, FREDERIKSEN B, SEIFERT J A, et al. Sugar intake is associated with progression from islet autoimmunity to type 1 diabetes: the Diabetes Autoimmunity Study in the Young[J]. Diabetologia, 2015, 58(9): 2027-2034. |
26 | 柳健, 廖斐, 董卫国. 早发性结直肠癌相关危险因素的研究进展[J]. 医学研究杂志, 2022, 51(5): 26-29. |
26 | LIU J, LIAO F, DONG W G, et al. Research progress on risk factors related to early-onset colorectal cancer[J]. Journal of Medical Research, 2022, 51(5): 26-29. |
27 | GONZALEZ-GRONOW M, PIZZO S V. Physiological roles of the autoantibodies to the 78-kilodalton glucose-regulated protein (GRP78) in cancer and autoimmune diseases[J]. Biomedicines, 2022, 10(6): 1222. |
/
〈 |
|
〉 |